Question 3(vi, vii, viii, ix & x) Exercise 8.3
Solutions of Question 3(vi, vii, viii, ix & x) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Questio 3(vi)
Prove the identity $2\tan y \cos 3y= \sec y(\sin 4y-\sin 2y)$
Solution.
\begin{align*}
LHS & = 2\tan y \cos 3y \\
& = 2 \cdot \frac{\sin y}{\cos y} \cos 3y \\
& = \sec y (2 \cos 3y \sin y) \\
& = \sec y \left(\sin (3y+y)-\sin (3y-y) \right) \\
& = \sec y(\sin 4y - \sin 2y)\\
&= RHS
\end{align*}
Questio 3(vii)
Prove the identity $\dfrac{ \sin 6 \beta + \sin 4 \beta}{\sin 6 \beta - \sin 4 \beta}=\tan 5 \beta \cot \beta$
Solution.
\begin{align*}
LHS & = \dfrac{ \sin 6 \beta + \sin 4 \beta}{\sin 6 \beta - \sin 4 \beta} \\
& = \dfrac{2 \sin \left( \frac{6\beta + 4\beta}{2} \right) \cos \left( \frac{6\beta - 4\beta}{2} \right)}{2 \cos \left( \frac{6\beta + 4\beta}{2} \right) \sin \left( \frac{6\beta - 4\beta}{2} \right)} \\
& = \dfrac{\sin 5\beta \cos 5\beta}{\sin \beta \cos \beta} \\
& = \tan 5\beta \cot \beta\\
&= RHS
\end{align*}
Questio 3(viii)
Prove the identity $\dfrac{ \cot 3 \theta + \cot \theta}{\cot 3 \theta - \cot \theta}=-\cos 2 \theta \cot \theta$.
Solution.
\begin{align*}
LHS & = \dfrac{ \cot 3 \theta + \cot \theta}{\cot 3 \theta - \cot \theta} \\
& = \dfrac{\frac{\cos 3\theta}{\sin 3\theta} + \frac{\cos \theta}{\sin \theta}}{\frac{\cos 3\theta}{\sin 3\theta} - \frac{\cos \theta}{\sin \theta}} \\
& = \dfrac{\frac{\cos 3\theta \sin \theta + \sin 3\theta \cos \theta}{\sin 3\theta \sin \theta}}{\frac{\cos 3\theta \sin \theta - \sin 3\theta \cos \theta }{\sin 3\theta \sin \theta}} \\
& = \dfrac{ \sin 3\theta \cos \theta +\cos 3\theta \sin \theta }{-(\sin 3\theta \cos \theta-\cos 3\theta \sin \theta)} \\
& = \dfrac{\sin (3\theta+\theta)}{-\sin (3\theta-\theta)} \\
& = -\dfrac{\sin 4\theta}{\sin 2\theta} \\
& = -\dfrac{2\sin 2\theta \cos 2\theta}{\sin 2\theta} \\
& = -2 \cos 2\theta \\
&= RHS
\end{align*}
Correction:
The corrected version of the question can be stated as follows:
$$\dfrac{ \cot 3 \theta + \cot \theta}{\cot 3 \theta - \cot \theta}=-2\cos 2 \theta$$
Questio 3(ix)
Prove the identity $\dfrac{\cos 6x+\cos8x}{\sin6x-\sin4x}=\cot x \cos7x \sec 5x$
Solution.
\begin{align*}
LHS & = \dfrac{\cos 6x + \cos 8x}{\sin 6x - \sin 4x} \\
& = \dfrac{2 \cos \left( \frac{6x + 8x}{2} \right) \cos \left( \frac{6x - 8x}{2} \right)}{2 \cos \left( \frac{6x + 4x}{2} \right) \sin \left( \frac{6x - 4x}{2} \right)} \\
& = \dfrac{\cos(7x) \cos(-x)}{\cos(5x) \sin(x)} \\
& = \cos 7x \dfrac{1}{\cos 5x} \dfrac{\cos x }{\sin x} \\
& = \cos 7x \sec 5x \cot x\\
&=RHS
\end{align*}
Questio 3(x)
Prove the identity $\dfrac{\cos 2\alpha-\cos4 \alpha}{\sin2\alpha+\sin4\alpha}=\tan \alpha$
Solution.
\begin{align*}
LHS & = \dfrac{\cos 2\alpha - \cos 4\alpha}{\sin 2\alpha + \sin 4\alpha} \\
& = \dfrac{-2 \sin\left(\frac{2\alpha + 4\alpha}{2}\right) \sin\left(\frac{2\alpha - 4\alpha}{2}\right)}{2 \sin\left(\frac{2\alpha + 4\alpha}{2}\right) \cos\left(\frac{2\alpha - 4\alpha}{2}\right)} \\
& = \dfrac{-\sin 3\alpha \sin(-\alpha)}{\sin 3\alpha \cos \alpha } \\
& = \dfrac{\sin \alpha }{\cos \alpha} \\
& = \tan \alpha\\
&=RHS
\end{align*}
Go to