Question 3(i, ii, iii, iv & v) Exercise 8.3
Solutions of Question 3(i, ii, iii, iv & v) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Questio 3(i)
Prove the identity $\dfrac{\cos (\alpha + \beta)}{\cos(\alpha - \beta)}=\dfrac{1- \tan \alpha \tan \beta}{1+ \tan \alpha \tan \beta}$
Solution.
\begin{align*} RHS & = \dfrac{1- \tan \alpha \tan \beta}{1+ \tan \alpha \tan \beta} \\ & = \dfrac{1- \frac{\sin\alpha}{\cos\alpha} \frac{\sin\beta}{\cos\beta}}{1+ \frac{\sin\alpha}{\cos\alpha} \frac{\sin\beta}{\cos\beta}} \\ & = \dfrac{\dfrac{\cos\alpha \cos\beta - \sin\alpha \sin\beta}{\cos\alpha \cos\beta}}{\dfrac{\cos\alpha \cos\beta + \sin\alpha \sin\beta}{\cos\alpha \cos\beta}} \\ & = \dfrac{\cos(\alpha-\beta)}{\cos(\alpha+\beta)} \\ & = LHS \end{align*}
Questio 3(ii)
Prove the identity $\dfrac{6 \cos 8u \sin 2u}{\sin (-6u)}=-\dfrac{\sin 10 u}{\sin 6u}+3$
Solution.
\begin{align*} RHS & = \dfrac{6 \cos 8u \sin 2u}{\sin (-6u)} \\ & = \dfrac{6 \cos 8u \sin 2u}{-\sin 6u} \\ & = -\dfrac{6 \cos 8u \sin 2u}{\sin 6u} \\ & = -\dfrac{3(\sin(10u) - \sin(2u))}{\sin 6u} \\ & = -3\dfrac{\sin 10u}{\sin 6u} + 3\\ & = LHS \end{align*}
Questio 3(iii)
Prove the identity $4 \cos 4v \sin 3v=2(\sin 7v - \sin v)$
Solution.
\begin{align*} RHS & = 4 \cos 4v \sin 3v \\ & = 2 \cdot 2 \cos 4v \sin 3v \\ & = 2 \cdot \left( \sin(3v + 4v) - \sin(3v - 4v) \right) \\ & = 2 \cdot \left( \sin 7v - \sin(-v) \right) \\ & = 2(\sin 7v + \sin v) \\ & = 2(\sin 7v - \sin v) \quad \text{(since \sin(-v) = -\sin v)}\\ & = LHS \end{align*}
Questio 3(iv)
Prove the identity $\sin 3 \theta + \sin \theta = 4\cos^2 \theta \sin \theta$
Solution.
\begin{align*} LHS & = \sin 3 \theta + \sin \theta \\ & = 2 \sin \left( \frac{3\theta + \theta}{2} \right) \cos \left( \frac{3\theta - \theta}{2} \right) \\ & = 2 \sin \left( \frac{4\theta}{2} \right) \cos \left( \frac{2\theta}{2} \right) \\ & = 2 \sin 2\theta \cos \theta \\ & = 2 (2 \sin \theta \cos \theta) \sin \theta \\ & = 4 \cos^2 \theta \sin \theta\\ &=RHS \end{align*}
Questio 3(v)
Prove the identity $\cos 3x + \cos x = 2 \cos x (\cos 2x)$.
Solution.
\begin{align*} LHS & = \cos 3x + \cos x \\ & = 2 \cos \left( \frac{3x + x}{2} \right) \cos \left( \frac{3x - x}{2} \right) \\ & = 2 \cos \left( \frac{4x}{2} \right) \cos \left( \frac{2x}{2} \right) \\ & = 2 \cos 2x \cos x \\ & = 2 \cos x (\cos 2x) \\ &=RHS \end{align*}
Go to