Question 3(xi, xii & xiii) Exercise 8.3
Solutions of Question 3(xi, xii & xiii) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Questio 3(xi)
Prove the identity $2\cos2u \cos u-\sin 2u \sin u=2\cos^3 u$
Solution.
\begin{align*} LHS & = 2\cos 2u \cos u - \sin 2u \sin u \\ & = 2\left(\cos^2 u - \sin^2 u\right) \cos u - 2\sin u \cos u \sin u \\ & = 2\cos^3 u - 2\sin^2 u \cos u \\ & = 2\cos^3 u\\ &=RHS \end{align*}
Questio 3(xii)
Prove the identity $2 \sin 2y \sin 3y=\cos y-\cos 5y $
Solution.
\begin{align*} LHS & = 2 \sin 2y \sin 3y \\ & = \cos(3y - 2y) - \cos(3y + 2y) \\ & = \cos y - \cos 5y\\ &=RHS \end{align*}
Questio 3(xiii)
Prove the identity $\dfrac{\cos 10x + \cos 6x}{\cos 6x - \cos 10x}=\cot 2x \cot 8x$
Solution.
\begin{align*} LHS & = \dfrac{\cos 10x + \cos 6x}{\cos 6x - \cos 10x} \\ & = \dfrac{2 \cos \left( \frac{10x + 6x}{2} \right) \cos \left( \frac{10x - 6x}{2} \right)}{-2 \sin \left( \frac{10x + 6x}{2} \right) \sin \left( \frac{10x - 6x}{2} \right)} \\ & = -\frac{\cos 8x \cos 2x}{\sin 8x \sin 2x} \\ & = \cot 2x \cot 8x\\ &=RHS \end{align*}
Go to