Question 1,Review Exercise
Solutions of Question 1 of Review Exercise of Unit 09: Trigonometric Functions. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Select the best matching option.
Chose the correct option.
i. If $\cos \theta=\frac{\sqrt{3}}{2}$ and the terminal arm of angle is in III quadrant. Then $\sin \theta=$
- $\frac{1}{2}$
- (b) $-\frac{1}{2}$
- (c) $\sqrt{3}$
- (d) $-\frac{2}{\sqrt{3}}$
(b): $-\frac{1}{2}$
ii. The exact value of the trigonometric function $\tan (-15 \pi)=$
* (a) $ 0$
* (b) $-1$
* (c) $1$
* (d) undefined
iii. If $2 \sin \theta+\frac{1}{2}cosec \theta \theta $ and $\theta=45^{\circ}$, then the value of the given trigonometric identity is:
* (a) $\frac{1}{\sqrt{2}}$
* (b)$\frac{1}{3}$
* (c) $\frac{3}{\sqrt{2}}$
* (d) $\frac{\sqrt{2}}{3}$
iv. If $\sin (270^{\circ}+\theta)=x$ and the terminal side of an angle $'\theta'$ is in IV quadrant, then $x=$
* (a) $\cos \theta$
* (b) $-\cos \theta$
* (c) $\sin \theta$
* (d) $-\sin \theta$
v. The trigonometric identity $\dfrac{\sin \alpha + \sin 2\alpha}{1+ \cos \alpha+\cos 2\alpha}=$
* (a) $\sin \alpha$
* (b) $\cos \alpha$
* (c) $\tan \alpha$
* (d) $\cot \alpha$
vi. Express $2\sin 3x \sin 7x$ as a sum or difference:
* (a) $\cos 4x-\cos 10x$
* (b) $\cos 10x-\cos 4x$
* (c) $\cos 4x+\cos 10x$
* (d) $\cos 10x+\cos 4x$
vii. Express $\sin 5x+\sin 7x$ as a product:
* (a) $2\sin 6x \cos x$
* (b) $2\sin x \cos 6x$
* (c) $2\cos 7x \sin 5x$
* (d) $2\cos 5x \sin 7x$
viii. The value of $\tan x \cdot \tan(\dfrac{\pi}{3}-x)\cdot \tan(\dfrac{\pi}{3}+x) $ is:
* (a) $2\cot 3x$
* (b) $\cot 3x$
* (c) $3\tan 3x$
* (d) $\tan 3x$
ix. If $\tan A=\frac{1}{7}$ and $\tan B=\frac{1}{3}$, then $\cos 2A$ is equal to:
* (a) $\sin B$
* (b) $\sin 4B$
* (c) $\sin 3B$
* (d) $\sin 2B$
x. Whether the function $f(x)=\frac{\sin^3 x}{x^2+\tan x}$ is:
* (a) even
* (b) odd
* (c) neither even nor odd
* (d) both even and odd
xi. The period of $\cos \frac{x}{5}$ is:
* (a) $10 \pi$
* (b) $\frac{2\pi}{5}$
* (c) $2\pi$
* (d) $4 \pi$
xii. The trogonometric function $y=cosec x$ meet at $x=$
* (a) $30^{\circ}$ \
* (b) $60^{\circ}$
* (c) $90^{\circ}$
* (d) $120^{\circ}$
xiii. $2\cos 5x \cdot \sin 3x=$
* (a) $\sin 8x+\sin 2x$
* (b) $\sin 8x-\sin 2x$
* (c) $\cos 8x+\cos 2x$
* (d) $\sin 4x-\sin x$
xiv. The trigonometric functions, which are even and having period $=2\pi$ are
* (a) $\sin x$ & $\cos x$
* (b) $\sec x$ & $ \cos x$
* (c) $\sin x $ & $ cosec x$
* (d) $\tan x $ & $\cot x$
xv. If $'f'$ is periodic function and its period is $\pi$, then $f(\theta)$ could be equal to:
* (a) $2\cos x$
* (b) $2 \cos 3x$
* (c) $3\cos2x$
* (d) $\cos 4 x$
xvi. If function $f(x)=\sin 8x$ is a periodic function and its period equals:
* (a) $\pi$
* (b) $\frac{\pi}{4}$
* (c) $2\pi$
* (d) $\frac{\pi}{2}$
xvii. If the range of the function $f(0)=a \sin (2\theta)+b$, where $a>0$, is \{3,5\}, then $3a+2b=$
* (a) $11$
* (b) $14$
* (c) $9$
* (d) $5$
xviii. The minimum value of the trigonometric function $f(0)=17 \sin(4\theta)$ is :
* (a) $4$
* (b) $-4$
* (c) $-17$
* (d) $17$
xix. If the given figure represent the curve $y=3\sin x$, then $|a|+|b|=$ FixMe
* (a) $1$
* (b) $2$
* (c) $3$
* (d) $6$
xx. The minimum value of $7 \cos x+24 \sin x$ is:
* (a) $25$
* (b) $-25$
* (c) $7$
* (d) $24$
Go to