# Question 6, 7 & 8, Review Exercise 1

Solutions of Question 6, 7 & 8 of Review Exercise 1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Find conjugate of $\dfrac{1}{3+4i}$.

Suppose $$z=\dfrac{1}{3+4i}.$$ Then \begin{align}z&=\dfrac{1}{3+4i}\times \dfrac{3-4i}{3-4i}\\ &=\dfrac{3-4i}{9+16}\\ &=\dfrac{3-4i}{25}\\ &=\dfrac{3}{25}-\dfrac{4}{25}i\end{align} Thus $$\bar{z}=\dfrac{3}{25}+\dfrac{4}{25}i.$$

Find the multiplicative inverse of $\dfrac{3i+2}{3-2i}$.

\begin{align}\dfrac{3i+2}{3-2i}\\ \dfrac{3i+2}{3-2i}&=\dfrac{3i+2}{3-2i}\times \dfrac{3+2i}{3+2i}\\ &=\dfrac{9i-6+6+4i}{9+4}\\ &=\dfrac{13i}{13}\\ &=i\\ a&=0,\quad\quad b=1\\ \sqrt{{{a}^{2}}+{{b}^{2}}}&=1\end{align} multiplicative inverse is
$$\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}-\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}$$ multiplicative inverse of $\dfrac{3i+2}{3-2i}=-i$

Find the quadrative equation $z+\dfrac{2}{z}=2.$

\begin{align}z+\dfrac{2}{z}&=2\\ {{z}^{2}}+2&=2z\\ {{z}^{2}}-2z+2&=0\end{align} According to the quadratic formula, we have
$$a=1,\quad b=-2$$ and $$c=2$$