Question 1, Exercise 1.3
Solutions of Question 1 of Exercise 1.3 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 1(i)
Solve the simultaneous linear equation with complex coefficient. \begin{align}&z-4w=3i\\ &2z+3w=11-5i\end{align}
Solution
Given that
\begin{align}z-4w&=3i …(i)\\
2z+3w&=11-5i …(ii)\end{align}
Multiply $2$ by (i), we get
\begin{align}2z-8w&=6i …(iii)\end{align}
Subtract (iii) from (ii), we get
\[\begin{array}{cccc}
2z&-8w&=6i \\
\mathop+\limits_{-}2z&\mathop+\limits_{-}3w&=\mathop-\limits_{+}5i&\mathop+\limits_{-}11 \\ \hline
0&-11w&=11i &-11\\
\end{array} \]
\begin{align}-11w&=11i-11\\
\implies w&=\dfrac{11-11i}{11}\\
\implies w&=1-i\end{align}
Put value of $w$ in (i).
\begin{align}z&-4(1-i)=3i\\
\implies z &=4(1-i)+3i\\
&=4-4i+3i\\
&=4-i\end{align}
Hence
$$z=4-i, \quad w=1-i.$$
Question 1(ii)
Solve the simultaneous linear equation with complex coefficient. \begin{align}&z+w=3i\\ &2z+3w=2\end{align}
Solution
Given that
\begin{align}z+w&=3i …(i)\\
2z+3w&=2 …(ii)\end{align}
Multiply $2$ by (i), we get
\begin{align}2z+2w&=6i …(iii)\end{align}
Subtract (iii) from (ii), we get
$$\begin{array}{ccc}
2z & +2w & =6i\\
\mathop+\limits_{-}2z & \mathop+\limits_{-}3w & =\mathop+\limits_{-}2 \\ \hline
-w & =6i & -2\\
\end{array}$$
\[-w=6i-2\]
\[w=2-6i\]
Put value of $w$ in (i).
\begin{align}z&+(2-6i)=3i\\
\implies z&=3i-2+6i\\
&=-2+9i\end{align}
Hence
$$z=-2+9i, \quad w=2-6i.$$
Question 1(iii)
Solve the simultaneous linear equation with complex coefficient. \begin{align} &3z+(2+i)w=11-i\\ &(2-i)z-w=-1+i\end{align}
Solution
Given that
\begin{align}3z+\left( 2+i \right)w&=11-i …(i)\\
\left( 2-i \right)z-w&=-1+i …(ii)\end{align}
Multiply $\left( 2-i \right)$ by (ii), we get,
\begin{align}\left( 2-i \right)\left( 2+i \right)z-\left( 2+i \right)w&=\left( 2+i \right)\left( i-1 \right)\\
5z-\left( 2+i \right)w&=i-3 …(iii)\end{align}
Add (i) and (iii), we get,
$$\begin{array}{cccc}
3z & +(2+i)w & =-i+11\\
5z & -(2+i)w & =i-3 \\ \hline
8z & 0 & =8\\
\end{array}\\
\implies z=1$$
Put value of $z$ in (i).
\begin{align}
&3(1)+(2+i)w=11-i\\
\implies &(2+i)w=11-i-3\\
\implies &(2+i)w=8-i\end{align}
\begin{align}
\implies w&=\dfrac{8-i}{2+i}\\
&=\dfrac{8-i}{2+i}\times \dfrac{2-i}{2-i}\\
&=\dfrac{16-8i-2i-1}{4+1}\\
&=\dfrac{15-10i}{5}=3-2i\end{align}
Hence
$$z=1, \quad w=3-2i.$$
Go to