Question 7, Exercise 1.1

Solutions of Question 7 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If z1=1+2i and z2=2+3i, evaluate |z1+z2|.

We know that z1=1+2i and z2=2+3i, then z1+z2=1+2i+2+3i=1+2+2i+3i=3+5i Now |z1+z2|=32+52=9+25=34

If z1=1+2i and z2=2+3i, evaluate |z1z2|.

We know that z1=1+2i and z2=2+3i, then z1z2=(1+2i)×(2+3i)=(26)+(3+4)i=4+7i. Now |z1z2|=(4)2+72=16+49=65

If z1=1+2i and z2=2+3i, evaluate |z1z2|.

We know that z1=1+2i and z2=2+3i, then z1z2=1+2i2+3i=1+2i2+3i×23i23i=(2+6)+(43)i4+9=(2+6)+(43)i4+9=8+i13=813+113i. Now |z1z2|=(813)2+(113)2=65169=6513