Question 6, 7 & 8, Review Exercise 1
Solutions of Question 6, 7 & 8 of Review Exercise 1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 6
Find conjugate of $\dfrac{1}{3+4i}$.
Solution
\begin{align}\dfrac{1}{3+4i}&=\dfrac{1}{3+4i}\times \dfrac{3-4i}{3-4i}\\ &=\dfrac{3-4i}{9+16}\\ &=\dfrac{3-4i}{25}\\ &=\dfrac{3}{25}-\dfrac{4i}{25}\end{align}
Question 7
Find the multiplicative inverse of $\dfrac{3i+2}{3-2i}$.
Solution
\begin{align}\dfrac{3i+2}{3-2i}\\
\dfrac{3i+2}{3-2i}&=\dfrac{3i+2}{3-2i}\times \dfrac{3+2i}{3+2i}\\
&=\dfrac{9i-6+6+4i}{9+4}\\
&=\dfrac{13i}{13}\\
&=i\\
a&=0,\quad\quad b=1\\
\sqrt{{{a}^{2}}+{{b}^{2}}}&=1\end{align}
multiplicative inverse is
$$\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}-\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}$$
multiplicative inverse of $\dfrac{3i+2}{3-2i}=-i$
Question 8
Find the quadrative equation $z+\dfrac{2}{z}=2.$
Solution
\begin{align}z+\dfrac{2}{z}&=2\\
{{z}^{2}}+2&=2z\\
{{z}^{2}}-2z+2&=0\end{align}
According to the quadratic formula, we have
$$a=1,\quad b=-2$$ and $$c=2$$
Quadratic formula is
\begin{align}z&=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\\
z&=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\left( 1 \right)\left( 2 \right)}}{2\left( 1 \right)}\\
z&=\dfrac{2\pm \sqrt{4-8}}{2}\\
z&=\dfrac{2\pm \sqrt{-4}}{2}\\
z&=\dfrac{2\pm 2i}{2}\\
z&=1\pm i\end{align}
Go To