Question 4 & 5, Review Exercise 1
Solutions of Question 4 & 5 of Review Exercise 1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 4
If ${{z}_{1}}=2-i$,${{z}_{2}}=1+i,$ find $|\dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+1}|$.
Solution
\begin{align}{{z}_{1}}&=2-i,\\
{{z}_{2}}&=1+i,\\
\dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+1}&=\dfrac{\left( 2-i \right)+\left( 1+i \right)+1}{\left( 2-i \right)-\left( 1+i \right)+1}\\
&=\dfrac{2-i+1+i+1}{2-i-1-i+1}\\
&=\dfrac{4}{2-2i}\\
&=\dfrac{2}{1-i}\\
&=\dfrac{2}{1-i}\times \dfrac{1+i}{1+i}\\
&=\dfrac{2\left( 1+i \right)}{1+1}\\
&=\dfrac{2\left( 1+i \right)}{2}\\
&=\left( 1+i \right)\end{align}
Now
\begin{align}|\dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+1}|&=\sqrt{{{1}^{2}}+{{1}^{2}}}\\
&=\sqrt{2}\end{align}
Question 5
Find the modulus of $\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}$.
Solution
\begin{align}\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}&=\dfrac{{{\left( 1+i \right)}^{2}}-{{\left( 1-i \right)}^{2}}}{1+1}\\
&=\dfrac{\left( 1+2i-1 \right)-\left( 1-2i-1 \right)}{2}\\
&=\dfrac{2i+2i}{2}\\
&=2i\end{align}
Modulus of $\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}$ is
\begin{align}|\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}|&=\sqrt{{{2}^{2}}}\\
|\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}|&=\sqrt{4}\\
|\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}|&=2\end{align}
Go To