Exercise 6.2

On the following page we have given the solution of Exercise 6.2 of Mathematics 9 (Science) published by Caravan Book House, Lahore.

We have created this page and it will be updated to add new solutions occasionally. Please stay in touch with this page.

Simplify as rational expression

x2x6x29+x2+2x24x2x12

Solution:

x2x6x29+x2+2x24x2x12=x23x+2x6(x)2(3)2+x2+6x4x24x24x+3x12=x(x3)+2(x3)(x3)(x+3)+x(x+6)4(x+6)x(x4)+3(x4)=(x3)(x+2)(x3)(x+3)+(x+6)(x4)(x4)(x+3)=(x+2)(x+3)+(x+6)(x+3)=x+2+x+6x+3=2x+8x+3=2x+4x+3

[x+1x1x1x+14xx2+1]+4xx41

Solution:

[x+1x1x1x+14xx2+1]+4xx41=(x+1x1x1x+1)4xx2+1+4xx41=((x+1)2(x1)2(x1)(x+1))4xx2+1+4xx41=x2+2x+1x2+2x1(x21)4xx2+1+4xx41=4xx214xx2+1+4xx41=4x(1x211x2+1)+4xx41=4x(x2+1x2+1x41)+4xx41=4x2x41+4xx41=4x(2+1x41)=12xx41

1x28x+15+1x24x+32x26x+5

Solution:

1x28x+15+1x24x+32x26x+5=1x23x5x+15+1x2x3x+32x2x5x+5=1x(x3)5(x3)+1x(x1)3(x1)2x(x1)5(x1)=1(x3)(x5)+1(x1)(x3)2(x1)(x5)=(x1)+(x5)2(x3)(x1)(x3)(x5)=x1+x52x+6(x1)(x3)(x5)=2x2x6+6(x1)(x3)(x5)=0

1x28x+15+1x24x+32x26x+5

Solution:

1x28x+15+1x24x+32x26x+5=1x23x5x+15+1x2x3x+32x2x5x+5=1x(x3)5(x3)+1x(x1)3(x1)2x(x1)5(x1)=1(x3)(x5)+1(x1)(x3)2(x1)(x5)=(x1)+(x5)2(x3)(x1)(x3)(x5)=x1+x52x+6(x1)(x3)(x5)=2x2x6+6(x1)(x3)(x5)=0

x+32x2+9x+9+12(2x3)4x4x29

Solution:

x+32x2+9x+9+12(2x3)4x4x29=x+32x2+6x+3x+9+12(2x3)4x(2x3)(2x+3)=2(2x3)+(2x+3)8x2(2x+3)(2x3)=4x6+2x+38x2(2x+3)(2x3)=2x32(2x+3)(2x3)=(2x+3)2(2x+3)(2x3)=12(2x3)

A1A if A=a+1a1

Solution:

A1A=a+1a11a+1a1=a+1a1a1a+1=(a+1)2(a1)2(a+1)(a1)=(a2+2a+1)(a22a+1)(a+1)(a1)=a2+2a+1a2+2a1(a+1)(a1)=4a(a21)

[x1x2+22x][x+1x+2+44x2]

Solution:

[x1x2+22x][x+1x+2+44x2]=[x1x22x2][x+1x+24(x2)(x+2)]=x12x2(x+1)(x2)4(x+2)(x2)=x3x2x2x24(x+2)(x2)=x3x2x2x6(x+2)(x2)=x3x2x23x+2x6(x+2)(x2)=x3x2x(x3)+2(x3)(x+2)(x2)=x3x2(x3)(x+2)(x+2)(x2)=x3x2(x3)(x2)=0

What rational expression should be subtracted from 2x2+2x7x2+x6 to get x1x2
Let A be the required expression.
2x2+2x7x2+x6A=x1x2

Solution:

A=2x2+2x7x2+x6x1x2=2x2+2x7x2+3x2x6x1x2=2x2+2x7x(x+3)2(x+3)x1x2=2x2+2x7(x+3)(x2)x1x2=2x2+2x7(x1)(x+3)(x+3)(x2)=2x2+2x7(x2+2x3)(x+3)(x2)=2x2+2x7x22x+3(x+3)(x2)=x24(x+3)(x2)=(x2)(x+2)(x+3)(x2)=(x+2)(x+3)

perfrom the indicated operation and simplify the lowest form

x2+x6x2x6×x24x29

Solution:

x2+x6x2x6×x24x29=x2+3x2x6x23x+2x6×(x2)(x+2)(x3)(x+3)=x(x+3)2(x+3)x(x3)+2(x3)×(x2)(x+2)(x3)(x+3)=(x+3)(x2)(x3)(x+2)×(x2)(x+2)(x3)(x+3)=(x2)(x2)(x3)(x3)=(x2)2(x3)2

x38x24×x2+6x+8x22x+1

Solution:

x38x24×x2+6x+8x22x+1=x323x222×x2+4x+2x+8x2xx+1=(x2)(x2+2x+4)(x2)(x+2)×x(x+4)+2(x+4)x(x1)1(x1)=(x2+2x+4)(x+2)×(x+4)(x+2)(x1)(x1)=(x2+2x+4)(x+4)(x1)2

x48x2x2+5x3×2x1x2+2x+4×x+3x22x

Solution:

x48x2x2+5x3×2x1x2+2x+4×x+3x22x=x(x38)2x2+6xx3×2x1x2+2x+4×x+3x(x2)=x(x2)(x2+2x+4)2x(x+3)1(x+3)×2x1x2+2x+4×x+3x(x2)=x(x2)(x2+2x+4)(x+3)(2x1)×2x1x2+2x+4×x+3x(x2)=1

2y2+7y43y213y+4÷4y216y2+y1

Solution:

2y2+7y43y213y+4÷4y216y2+y1=2y2+8yy43y212yy+4÷(2y)2(1)26y2+3y2y1=2y(y+4)1(y+4)3y(y4)1(y4)÷(2y1)(2y+1)3y(2y+1)1(2y+1)=(y+4)(2y1)(y4)(3y1)÷(2y1)(2y+1)(2y+1)(3y1)=(y+4)(2y1)(y4)(3y1)×(3y1)(2y1)=y+4y4

[x2+y2x2y2x2y2x2+y2]÷[x+yxyxyx+y]

Solution:

[x2+y2x2y2x2y2x2+y2]÷[x+yxyxyx+y]=[(x2+y2)2(x2y2)2(x2y2)(x2+y2)]÷[(x+y)2(xy)2(xy)(x+y)]=[x4+y4+2x2y2(x4+y42x2y2)(x2y2)(x2+y2)]÷[(x2+y2+2xy)(x2+y22xy)(xy)(x+y)]=x4+y4+2x2y2x4y4+2x2y2(x2y2)(x2+y2)÷x2+y2+2xyx2y2+2xy(xy)(x+y)=4x2y2(x2y2)(x2+y2)÷4xy(xy)(x+y)=4x2y2(x2y2)(x2+y2)×(xy)(x+y)4xy=xyx2+y2