Exercise 6.2
On the following page we have given the solution of Exercise 6.2 of Mathematics 9 (Science) published by Caravan Book House, Lahore.
We have created this page and it will be updated to add new solutions occasionally. Please stay in touch with this page.
Simplify as rational expression
Question 1:
x2−x−6x2−9+x2+2x−24x2−x−12
Solution:
x2−x−6x2−9+x2+2x−24x2−x−12=x2−3x+2x−6(x)2−(3)2+x2+6x−4x−24x2−4x+3x−12=x(x−3)+2(x−3)(x−3)(x+3)+x(x+6)−4(x+6)x(x−4)+3(x−4)=(x−3)(x+2)(x−3)(x+3)+(x+6)(x−4)(x−4)(x+3)=(x+2)(x+3)+(x+6)(x+3)=x+2+x+6x+3=2x+8x+3=2x+4x+3
Question 2:
[x+1x−1−x−1x+1−4xx2+1]+4xx4−1
Solution:
[x+1x−1−x−1x+1−4xx2+1]+4xx4−1=(x+1x−1−x−1x+1)−4xx2+1+4xx4−1=((x+1)2−(x−1)2(x−1)(x+1))−4xx2+1+4xx4−1=x2+2x+1−x2+2x−1(x2−1)−4xx2+1+4xx4−1=4xx2−1−4xx2+1+4xx4−1=4x(1x2−1−1x2+1)+4xx4−1=4x(x2+1−x2+1x4−1)+4xx4−1=4x2x4−1+4xx4−1=4x(2+1x4−1)=12xx4−1
Question 3:
1x2−8x+15+1x2−4x+3−2x2−6x+5
Solution:
1x2−8x+15+1x2−4x+3−2x2−6x+5=1x2−3x−5x+15+1x2−x−3x+3−2x2−x−5x+5=1x(x−3)−5(x−3)+1x(x−1)−3(x−1)−2x(x−1)−5(x−1)=1(x−3)(x−5)+1(x−1)(x−3)−2(x−1)(x−5)=(x−1)+(x−5)−2(x−3)(x−1)(x−3)(x−5)=x−1+x−5−2x+6(x−1)(x−3)(x−5)=2x−2x−6+6(x−1)(x−3)(x−5)=0
Question 4:
1x2−8x+15+1x2−4x+3−2x2−6x+5
Solution:
1x2−8x+15+1x2−4x+3−2x2−6x+5=1x2−3x−5x+15+1x2−x−3x+3−2x2−x−5x+5=1x(x−3)−5(x−3)+1x(x−1)−3(x−1)−2x(x−1)−5(x−1)=1(x−3)(x−5)+1(x−1)(x−3)−2(x−1)(x−5)=(x−1)+(x−5)−2(x−3)(x−1)(x−3)(x−5)=x−1+x−5−2x+6(x−1)(x−3)(x−5)=2x−2x−6+6(x−1)(x−3)(x−5)=0
Question 5:
x+32x2+9x+9+12(2x−3)−4x4x2−9
Solution:
x+32x2+9x+9+12(2x−3)−4x4x2−9=x+32x2+6x+3x+9+12(2x−3)−4x(2x−3)(2x+3)=2(2x−3)+(2x+3)−8x2(2x+3)(2x−3)=4x−6+2x+3−8x2(2x+3)(2x−3)=−2x−32(2x+3)(2x−3)=−(2x+3)2(2x+3)(2x−3)=−12(2x−3)
Question 6:
A−1A if A=a+1a−1
Solution:
A−1A=a+1a−1−1a+1a−1=a+1a−1−a−1a+1=(a+1)2−(a−1)2(a+1)(a−1)=(a2+2a+1)−(a2−2a+1)(a+1)(a−1)=a2+2a+1−a2+2a−1(a+1)(a−1)=4a(a2−1)
Question 7:
[x−1x−2+22−x]−[x+1x+2+44−x2]
Solution:
[x−1x−2+22−x]−[x+1x+2+44−x2]=[x−1x−2−2x−2]−[x+1x+2−4(x−2)(x+2)]=x−1−2x−2−(x+1)(x−2)−4(x+2)(x−2)=x−3x−2−x2−x−2−4(x+2)(x−2)=x−3x−2−x2−x−6(x+2)(x−2)=x−3x−2−x2−3x+2x−6(x+2)(x−2)=x−3x−2−x(x−3)+2(x−3)(x+2)(x−2)=x−3x−2−(x−3)(x+2)(x+2)(x−2)=x−3x−2−(x−3)(x−2)=0
Question 8:
What rational expression should be subtracted from
2x2+2x−7x2+x−6 to get x−1x−2
Let A be the required expression.
2x2+2x−7x2+x−6−A=x−1x−2
Solution:
A=2x2+2x−7x2+x−6−x−1x−2=2x2+2x−7x2+3x−2x−6−x−1x−2=2x2+2x−7x(x+3)−2(x+3)−x−1x−2=2x2+2x−7(x+3)(x−2)−x−1x−2=2x2+2x−7−(x−1)(x+3)(x+3)(x−2)=2x2+2x−7−(x2+2x−3)(x+3)(x−2)=2x2+2x−7−x2−2x+3(x+3)(x−2)=x2−4(x+3)(x−2)=(x−2)(x+2)(x+3)(x−2)=(x+2)(x+3)
perfrom the indicated operation and simplify the lowest form
Question 9:
x2+x−6x2−x−6×x2−4x2−9
Solution:
x2+x−6x2−x−6×x2−4x2−9=x2+3x−2x−6x2−3x+2x−6×(x−2)(x+2)(x−3)(x+3)=x(x+3)−2(x+3)x(x−3)+2(x−3)×(x−2)(x+2)(x−3)(x+3)=(x+3)(x−2)(x−3)(x+2)×(x−2)(x+2)(x−3)(x+3)=(x−2)(x−2)(x−3)(x−3)=(x−2)2(x−3)2
Question 10:
x3−8x2−4×x2+6x+8x2−2x+1
Solution:
x3−8x2−4×x2+6x+8x2−2x+1=x3−23x2−22×x2+4x+2x+8x2−x−x+1=(x−2)(x2+2x+4)(x−2)(x+2)×x(x+4)+2(x+4)x(x−1)−1(x−1)=(x2+2x+4)(x+2)×(x+4)(x+2)(x−1)(x−1)=(x2+2x+4)(x+4)(x−1)2
Question 11:
x4−8x2x2+5x−3×2x−1x2+2x+4×x+3x2−2x
Solution:
x4−8x2x2+5x−3×2x−1x2+2x+4×x+3x2−2x=x(x3−8)2x2+6x−x−3×2x−1x2+2x+4×x+3x(x−2)=x(x−2)(x2+2x+4)2x(x+3)−1(x+3)×2x−1x2+2x+4×x+3x(x−2)=x(x−2)(x2+2x+4)(x+3)(2x−1)×2x−1x2+2x+4×x+3x(x−2)=1
Question 12:
2y2+7y−43y2−13y+4÷4y2−16y2+y−1
Solution:
2y2+7y−43y2−13y+4÷4y2−16y2+y−1=2y2+8y−y−43y2−12y−y+4÷(2y)2−(1)26y2+3y−2y−1=2y(y+4)−1(y+4)3y(y−4)−1(y−4)÷(2y−1)(2y+1)3y(2y+1)−1(2y+1)=(y+4)(2y−1)(y−4)(3y−1)÷(2y−1)(2y+1)(2y+1)(3y−1)=(y+4)(2y−1)(y−4)(3y−1)×(3y−1)(2y−1)=y+4y−4
Question 13:
[x2+y2x2−y2−x2−y2x2+y2]÷[x+yx−y−x−yx+y]
Solution:
[x2+y2x2−y2−x2−y2x2+y2]÷[x+yx−y−x−yx+y]=[(x2+y2)2−(x2−y2)2(x2−y2)(x2+y2)]÷[(x+y)2−(x−y)2(x−y)(x+y)]=[x4+y4+2x2y2−(x4+y4−2x2y2)(x2−y2)(x2+y2)]÷[(x2+y2+2xy)−(x2+y2−2xy)(x−y)(x+y)]=x4+y4+2x2y2−x4−y4+2x2y2(x2−y2)(x2+y2)÷x2+y2+2xy−x2−y2+2xy(x−y)(x+y)=4x2y2(x2−y2)(x2+y2)÷4xy(x−y)(x+y)=4x2y2(x2−y2)(x2+y2)×(x−y)(x+y)4xy=xyx2+y2