MathCraft: PDF to LaTeX file: Sample-02
If the PDF file provided by you as follows:
Then the output LaTeX file is as follows:
\documentclass[4pt]{article} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage[version=4]{mhchem} \usepackage{stmaryrd} \usepackage{bbold} \usepackage[a4paper]{geometry} \linespread{1.3} % double spaces lines \textwidth 6.3truein % These 4 commands define more efficient margins \textheight 9.9truein \oddsidemargin 0.0in \evensidemargin 0.0in \topmargin -0.75in \parindent 0pt % let's not indent paragraphs \parskip 5pt \usepackage{graphicx} \usepackage[export]{adjustbox} \graphicspath{ {./images/} } \usepackage{wrapfig} \title{Hermite-Hadamard integral inequality } \author{} \date{} \begin{document} \maketitle \vspace{-0.7 in} If $f:[a, b] \rightarrow \mathbb{R}$ is convex, then $$ f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant \frac{f(a)+f(b)}{2} . $$ \noindent\textbf{Proof}: First of all, let's recall that a convex function on a open interval $(a, b)$ is continuous on $(a, b)$ and admits left and right derivative $f_{+}^{\prime}(x)$ and $f_{-}^{\prime}(x)$ for any $x \in(a, b)$. For this reason, it's always possible to construct at least one supporting line for $f(x)$ at any $x_{0} \in(a, b)$ : if $f\left(x_{0}\right)$ is differentiable in $x_{0}$, one has $r(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$; if not, it's obvious that all $r(x)=f\left(x_{0}\right)+c\left(x-x_{0}\right)$ are supporting lines for any $c \in\left[f_{-}^{\prime}\left(x_{0}\right), f_{+}^{\prime}\left(x_{0}\right)\right]$. \begin{wrapfigure}{r}{0.45\textwidth} \includegraphics[width=0.99\linewidth]{fig01} %\caption{Caption 1} \label{fig:wrapfig} \end{wrapfigure} \vspace{.2 in} Let now $r(x)=f\left(\frac{a+b}{2}\right)+c\left(x-\frac{a+b}{2}\right)$ be a supporting line of $f(x)$ in $x=\frac{a+b}{2} \in(a, b)$. Then, $r(x) \leq f(x)$. On the other side, by convexity definition, having defined $s(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$ the line connecting the points $(a, f(a))$ and $(b, f(b))$, one has $f(x) \leq s(x)$. Shortly, $$r(x) \leq f(x) \leq s(x)$$ Integrating both inequalities between $a$ and $b$ \begin{equation*} \int_{a}^{b} r(x) d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} s(x) d x . \tag{1} \end{equation*} Now $$ \begin{aligned} \int_{a}^{b} r(x) d x & =\int_{a}^{b}\left[f\left(\frac{a+b}{2}\right)+c\left(x-\frac{a+b}{2}\right)\right] d x \\ & =f\left(\frac{a+b}{2}\right)(b-a)+c \int_{a}^{b}\left(x-\frac{a+b}{2}\right) d x \\ & =f\left(\frac{a+b}{2}\right)(b-a), \end{aligned} $$ and $$ \begin{aligned} \int_{a}^{b} s(x) d x & =\int_{a}^{b}\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right] d x \\ & =f(a)(b-a)+\frac{f(b)-f(a)}{b-a} \int_{a}^{b}(x-a) d x \\ & =\frac{f(a)+f(b)}{2}(b-a) . \end{aligned} $$ Using above value in (1), we have $$ f\left(\frac{a+b}{2}\right)(b-a) \leq \int_{a}^{b} f(x) d x \leq, \frac{f(a)+f(b)}{2}(b-a) $$ which is the thesis. \end{document}