Question 1(ix, x & xi) Exercise 8.3
Solutions of Question 1(ix, x & xi) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1(ix)
Use the product-to-sum formula to change the sum or difference: $2 \sin 75{\circ} \sin 15{\circ}$.
Solution.
\begin{align*} &\quad2 \sin 75^{\circ} \sin 15^{\circ} \\ &= \cos(75^{\circ} - 15^{\circ}) - \cos(75^{\circ} + 15^{\circ}) \\ &= \cos 60^{\circ} - \cos 90^{\circ} \\ \end{align*}
Question 1(x)
Use the product-to-sum formula to change the sum or difference: $4 \sin \frac{u+v}{2} \cos \frac{u-v}{2} $.
Solution.
\begin{align*} &4 \sin \frac{u+v}{2} \cos \frac{u-v}{2} \\ &= 2 \cdot 2 \sin \frac{u+v}{2} \cos \frac{u-v}{2} \\ &= 2[\sin\left( \frac{u+v}{2} + \frac{u-v}{2} \right) + \sin\left( \frac{u+v}{2} - \frac{u-v}{2} \right)] \\ &= 2[\sin u + \sin v ] \end{align*}
Question 1(xi)
Use the product-to-sum formula to change the sum or difference: $2 \cos \frac{2u+2v}{2}\sin \frac{2u-2v}{2} $.
Solution.
\begin{align*} & 2 \cos \frac{2u+2v}{2}\sin \frac{2u-2v}{2} \\ & = 2 \cos (u+v) \sin (u-v) \\ & = \sin \left(u+v+u-v \right) - \sin\left(u+v-u+v \right) \\ & = \sin 2u - \sin 2v \end{align*}
Go to