Question 8(vii, viii & ix) Exercise 8.2

Solutions of Question 8(vii, viii & ix) of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Verify the identities: $\sin 2 \theta=2 \cot \theta \sin ^{2} \theta$

Solution.

\begin{align*} RHS &= 2 \cot \theta \sin ^{2} \theta\\ &= 2 \frac{\cos \theta }{\sin \theta} \sin ^{2} \theta\\ &= 2 \cos \theta \sin\theta\\ &= \sin2 \theta\\ &=LHS \end{align*}

Verify the identities: $\cos ^{2} 2 x+4 \sin ^{2} x \cos ^{2} x=1$

Solution.

\begin{align*} LHS &= \cos ^{2} 2 x+4 \sin ^{2} x \cos ^{2} x\\ &= \cos ^{2} 2 x+ \sin ^{2}2 x \\ &= 1\\ &=RHS \end{align*}

Verify the identities: $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$

Solution.

\begin{align*} RHS &= 8 \cos ^{4} \theta-8 \cos ^{2} \theta+1\\ &=8(\frac{1+\cos2\theta}{2})^2-8(\frac{1+\cos2 \theta}{2})+1 \\ &= 2(1+\cos2\theta)^2-4(1+\cos2\theta)+1\\ &= 2(1+\cos^22\theta+2\cos2\theta)-4(1+\cos2\theta)+1\\ &= 2+2\cos^22\theta+4\cos2\theta-4-4\cos2\theta+1\\ &= 2\cos^22\theta-1\\ &=2(\frac{1+\cos 4 \theta}{2})-1\\ &=\cos 4 \theta\\ &=LHS \end{align*}