Question 5 Exercise 8.2
Solutions of Question 5 of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 5(i)
Find exact values for $\sin \theta$, $\cos \theta$ and $\tan \theta$ using the information given: $\sin 2 \theta=\frac{24}{25}, 2 \theta$ in QII
Solution.
Given: $\sin 2\theta=\dfrac{24}{25}$, $2\theta$ in QII.
We have $$\cos 2\theta = \pm \sqrt{1-\sin^2 2\theta}$$
Since $2\theta$ in QII, therefore $\cos 2\theta$ is negative.
\begin{align*}\cos 2\theta & = - \sqrt{1-\sin^2 2\theta}\\ &=- \sqrt{1-\left(\frac{24}{25}\right)^2} \\ &=- \sqrt{\frac{49}{625}} = -\frac{7}{25} \end{align*}
Also we have $$\sin\theta = \pm \sqrt{\frac{1-\cos 2\theta}{2}} $$
As $\frac{\pi}{2}< 2\theta < \pi$, so $\frac{\pi}{4}< \theta < \frac{\pi}{2}$, that is, $\theta$ lies in QI and $\sin\theta > 0$. Thus
\begin{align*} \sin\theta & = \sqrt{\frac{1-\cos 2\theta}{2}} \\ & = \sqrt{\frac{1-\left( -\frac{7}{25} \right)}{2}} \\ & = \sqrt{\frac{\frac{32}{25}}{2}} = \sqrt{\frac{16}{25}} \end{align*} \begin{align*} \implies \boxed{\sin\theta = \frac{4}{5}} \end{align*} Also $$\cos\theta = \pm\sqrt{1-\sin\theta}$$ As $\theta$ lies in QI, therefore $\cos\theta >0$, thus \begin{align*} \cos\theta & = \sqrt{1-\sin\theta} \\ &=\sqrt{1-\left(\frac{4}{5} \right)^2} \\ & = \sqrt{1-\frac{16}{25}} = \sqrt{\frac{9}{25}} \end{align*} \begin{align*} \implies \boxed{\cos\theta=\frac{3}{5}} \end{align*} Now \begin{align*} \tan\theta & =\frac{\sin\theta}{\cos\theta} \\ & = \frac{4/5}{3/5} \end{align*} \begin{align*} \implies \boxed{\tan\theta=\frac{4}{3}} \end{align*}
Question 5(ii)
Find exact values for $\sin \theta, \cos \theta$ and $\tan \theta$ using the information given: $\cos 2 \theta=-\frac{7}{25}, 2 \theta$ in QIII
Solution.
Given: \(\cos 2\theta = -\dfrac{7}{25}\) and \(2\theta\) lies in QIII.
We have:
\[\sin 2\theta = \pm \sqrt{1 - \cos^2 2\theta}\]
Since \(2\theta\) lies in QIII, we know that \(\sin 2\theta < 0\). Therefore: \begin{align*} \sin 2\theta & = -\sqrt{1 - \left(-\frac{7}{25}\right)^2} \\ & = -\sqrt{1 - \frac{49}{625}} \\ & = -\sqrt{\frac{576}{625}} = -\frac{24}{25}. \end{align*} Also, we have:
\[ \sin\theta = \pm \sqrt{\frac{1 - \cos 2\theta}{2}}. \]
As \(\pi < 2\theta < \frac{3\pi}{2}\) implies \(\frac{\pi}{2} < \theta < \pi\), i.e., \(\theta\) lies in QII, we know that \(\sin \theta > 0\). Thus: \begin{align*} \sin \theta & = \sqrt{\frac{1 - \left(-\frac{7}{25}\right)}{2}} \\ & = \sqrt{\frac{1 + \frac{7}{25}}{2}} \\ & = \sqrt{\frac{\frac{32}{25}}{2}} \\ & = \sqrt{\frac{16}{25}} = \frac{4}{5}. \end{align*} \begin{align*} \implies \boxed{\sin \theta = \frac{4}{5}}. \end{align*}
Also \[ \cos \theta = \pm \sqrt{1 - \sin^2 \theta}. \]
AS \(\theta\) lies in QII, \(\cos \theta < 0\), so: \begin{align*} \cos \theta & = -\sqrt{1 - \left(\frac{4}{5}\right)^2} \\ & = -\sqrt{1 - \frac{16}{25}} \\ & = -\sqrt{\frac{9}{25}} = -\frac{3}{5}. \end{align*} \begin{align*} \implies \boxed{\cos \theta = -\frac{3}{5}}. \end{align*} Now \begin{align*} \tan \theta & = \frac{\sin \theta}{\cos \theta} \\ & = \frac{\dfrac{4}{5}}{-\dfrac{3}{5}} \\ & = -\frac{4}{3}. \end{align*} \begin{align*} \implies \boxed{\tan \theta = -\frac{4}{3}}. \end{align*}
Question 5(iii)
Find exact values for $\sin \theta, \cos \theta$ and $\tan \theta$ using the information given: $\sin 2 \theta=-\frac{240}{289}, 2 \theta$ in QIII
Solution.
Given: \(\sin 2\theta = -\dfrac{240}{289}\) and \(2\theta\) lies in QIII.
We have:
\[\cos 2\theta = \pm \sqrt{1 - \sin^2 2\theta}.\]
Since \(2\theta\) lies in QIII, we know that \(\cos 2\theta < 0\). Therefore: \begin{align*} \cos 2\theta & = -\sqrt{1 - \left(-\frac{240}{289}\right)^2} \\ & = -\sqrt{1 - \frac{57600}{83521}} \\ & = -\sqrt{\frac{25921}{83521}} = -\frac{161}{289}. \end{align*} Also, we have,
\[\sin\theta = \pm \sqrt{\frac{1 - \cos 2\theta}{2}}\]
As \(\pi < 2\theta < \frac{3\pi}{2}\) implies \(\frac{\pi}{2} < \theta < \pi\), i.e., \(\theta\) lies in QII, we know that \(\sin \theta > 0\). Thus: \begin{align*} \sin\theta & = \sqrt{\frac{1 - \left(-\frac{161}{289}\right)}{2}} \\ & = \sqrt{\frac{1 + \frac{161}{289}}{2}} \\ & = \sqrt{\frac{\frac{450}{289}}{2}} = \sqrt{\frac{225}{289}} &= \frac{15}{17}. \end{align*} \begin{align*} \implies \boxed{\sin\theta = \frac{15}{17}}. \end{align*} Also
\[\cos \theta = \pm \sqrt{1 - \sin^2 \theta}\]
As \(\theta\) lies in QII, \(\cos \theta < 0\), so: \begin{align*} \cos \theta & = -\sqrt{1 - \left(\frac{15}{17}\right)^2} \\ & = -\sqrt{1 - \frac{225}{289}} \\ & = -\sqrt{\frac{64}{289}} = -\frac{8}{17}. \end{align*} \begin{align*} \implies \boxed{\cos \theta = -\frac{8}{17}}. \end{align*} Now \begin{align*} \tan \theta & = \frac{\sin \theta}{\cos \theta} \\ & = \frac{\frac{15}{17}}{-\frac{8}{17}} \\ & = -\frac{15}{8}. \end{align*} \begin{align*} \implies \boxed{\tan \theta = -\frac{15}{8}}. \end{align*}
Question 5(iv)
Find exact values for $\sin \theta, \cos \theta$ and $\tan \theta$ using the information given: $\cos 2 \theta=\frac{120}{169}, 2 \theta$ in QIV
Solution.
Given: \(\cos 2\theta = \frac{120}{169}\) and \(2\theta\) lies in QIV.
We have:
\[\sin 2\theta = \pm \sqrt{1 - \cos^2 2\theta}\]
Since \(2\theta\) lies in QIV, we know that \(\sin 2\theta < 0\). Therefore:
\begin{align*}
\sin 2\theta & = -\sqrt{1 - \left(\frac{120}{169}\right)^2} \\
& = -\sqrt{1 - \frac{14400}{28561}} \\
& = -\sqrt{\frac{14161}{28561}} = -\frac{119}{169}.
\end{align*}
Also, we have:
\[\sin \theta = \pm \sqrt{\frac{1 - \cos 2\theta}{2}}\]
As \( \frac{3\pi}{2} < 2\theta < 2\pi \) implies \( \frac{3\pi}{4} < \theta < \pi \), i.e., \(\theta\) lies in QII, we know that \(\sin \theta > 0\). Thus: \begin{align*} \sin \theta & = \sqrt{\frac{1 - \frac{120}{169}}{2}} \\ & = \sqrt{\frac{\frac{49}{169}}{2}} \\ & = \sqrt{\frac{49}{338}} = \frac{7}{\sqrt{338}}. \end{align*} \begin{align*} \implies \boxed{\sin\theta = \frac{7}{\sqrt{338}}}. \end{align*}
\[\cos \theta = \pm \sqrt{1 - \sin^2 \theta}\]
As \(\theta\) lies in QII, we know that \(\cos \theta < 0\). Therefore: \begin{align*} \cos \theta & = -\sqrt{1 - \left(\frac{7}{\sqrt{338}}\right)^2} \\ & = -\sqrt{1 - \frac{49}{338}} \\ & = -\sqrt{\frac{289}{338}} = -\frac{17}{\sqrt{338}}. \end{align*} \begin{align*} \implies \boxed{\cos\theta = -\frac{17}{\sqrt{338}}}. \end{align*} \begin{align*} \tan \theta & = \frac{\sin \theta}{\cos \theta} \\ & = \frac{\frac{7}{\sqrt{338}}}{-\frac{17}{\sqrt{338}}} \\ & = -\frac{7}{17}. \end{align*} \begin{align*} \implies \boxed{\tan\theta = -\frac{7}{17}}. \end{align*}
Go to