Question 10, Exercise 8.1
Solutions of Question 10 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 10(i)
Verify: sin(π2−α)=cosα
Solution.
L.H.S=sin(π2−α)=sinπ2cosα−cosπ2sinα=1×cosα−0×sinα=cosα=R.H.S
Question 10(ii)
Verify: cos(π−α)=−cosα
Solution.
L.H.S=cos(π−α)=cosπcosα+sinπsinα=(−1)⋅cosα+0⋅sinα=−cosα=R.H.S.
Question 10(iii)
Verify: cos(α+π4)=1√2(cosα−sinα)
Solution.
L.H.S=cos(α+π4)=cosαcosπ4−sinαsinπ4=cosα⋅1√2−sinα⋅1√2=1√2(cosα−sinα)=R.H.S
Question 10(iv)
Verify: sin(β+π4)=√22(cosβ+sinβ)
Solution.
L.H.S=cos(α+π4)=cosαcosπ4−sinαsinπ4=cosα⋅1√2−sinα⋅1√2=1√2(cosα−sinα)=R.H.S.
Question 10(v)
Verify: tan(γ−π4)=tanγ−1tanγ+1
Solution.
L.H.S=tan(γ−π4)=tanγ−tanπ41+tanγtanπ4=tanγ−11+tanγ⋅1(since tanπ4=1)=tanγ−11+tanγ=R.H.S.
Question 10(vi)
Verify: tan(γ+π4)=1+tanγ1−tanγ=cosγ+sinγcosγ−sinγ
Solution.
L.H.S=tan(γ+π4)=tanγ+tanπ41−tanγtanπ4=tanγ+11−tanγ⋅1(since tanπ4=1)=tanγ+11−tanγ.....(1)=sinγ/cosγ+11−sinγ/cosγ=sinγ+cosγcosγcosγ−sinγcosγ=cosγ+sinγcosγ−sinγ.....(2)
Combining L.H.S with (1) and (2), we have
tan(γ+π4)=1+tanγ1−tanγ=cosγ+sinγcosγ−sinγ.
Question 10(vii)
Verify: cos(x+y)+cos(x−y)=2cosxcosy
Solution.
L.H.S=cos(x+y)+cos(x−y)=cosxcosy−sinxsiny+cosxcosy+sinxsiny=2cosxcosy=R.H.S.
Question 10(viii)
Verify: sin(x+y)−sin(x−y)=2cosxsiny
Solution.
L.H.S=sin(x+y)−sin(x−y)=(sinxcosy+cosxsiny)−(sinxcosy−cosxsiny)=sinxcosy+cosxsiny−sinxcosy+cosxsiny=2cosxsiny=R.H.S.
Go to