Question 10, Exercise 8.1

Solutions of Question 10 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Verify: sin(π2α)=cosα

Solution.

L.H.S=sin(π2α)=sinπ2cosαcosπ2sinα=1×cosα0×sinα=cosα=R.H.S

GOOD

Verify: cos(πα)=cosα

Solution.

L.H.S=cos(πα)=cosπcosα+sinπsinα=(1)cosα+0sinα=cosα=R.H.S.

Verify: cos(α+π4)=12(cosαsinα)

Solution.

L.H.S=cos(α+π4)=cosαcosπ4sinαsinπ4=cosα12sinα12=12(cosαsinα)=R.H.S GOOD

Verify: sin(β+π4)=22(cosβ+sinβ)

Solution.

L.H.S=cos(α+π4)=cosαcosπ4sinαsinπ4=cosα12sinα12=12(cosαsinα)=R.H.S.

Verify: tan(γπ4)=tanγ1tanγ+1

Solution.

L.H.S=tan(γπ4)=tanγtanπ41+tanγtanπ4=tanγ11+tanγ1(since tanπ4=1)=tanγ11+tanγ=R.H.S.

Verify: tan(γ+π4)=1+tanγ1tanγ=cosγ+sinγcosγsinγ

Solution.

L.H.S=tan(γ+π4)=tanγ+tanπ41tanγtanπ4=tanγ+11tanγ1(since tanπ4=1)=tanγ+11tanγ.....(1)=sinγ/cosγ+11sinγ/cosγ=sinγ+cosγcosγcosγsinγcosγ=cosγ+sinγcosγsinγ.....(2) Combining L.H.S with (1) and (2), we have tan(γ+π4)=1+tanγ1tanγ=cosγ+sinγcosγsinγ. GOOD

Verify: cos(x+y)+cos(xy)=2cosxcosy

Solution.

L.H.S=cos(x+y)+cos(xy)=cosxcosysinxsiny+cosxcosy+sinxsiny=2cosxcosy=R.H.S.

Verify: sin(x+y)sin(xy)=2cosxsiny

Solution.

L.H.S=sin(x+y)sin(xy)=(sinxcosy+cosxsiny)(sinxcosycosxsiny)=sinxcosy+cosxsinysinxcosy+cosxsiny=2cosxsiny=R.H.S.