Question 13, Exercise 8.1
Solutions of Question 13 of Exercise 8.1 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 13(i)
Express in the form of $r \sin (\theta+\phi)$: $12 \sin \theta-5 \cos \theta$
Solution.
Let $12=r\cos \varphi $ and $-5=r\sin \varphi$.
Squaring and adding
\begin{align*}
& (12)^2+(-5)^2=r^2 \cos^2\varphi+r^2 \sin^2 \varphi \\
\implies & 144+25={{r}^{2}}\left( {{\cos }^{2}}\varphi +{{\sin }^{2}}\varphi \right) \\
\implies & 169={{r}^{2}}\left( 1 \right) \\
\implies & r=\sqrt{169}=13
\end{align*}
Also
\begin{align*}
& \frac{-5}{12}=\frac{r\sin \varphi }{r\cos \varphi } \\
\implies & \frac{-5}{12}=\tan \varphi \\
\implies & \varphi =\tan^{-1}\left(-\frac{5}{12}\right)
\end{align*}
Now \begin{align*} & 12\sin \theta +5\cos \theta \\ =& r\cos \varphi \sin \theta +r\sin \varphi \cos \theta \\ =& r\left( \cos \varphi \sin \theta +\sin \varphi \cos \theta \right) \\ =& r\sin \left( \theta +\varphi \right), \end{align*} where $r=13$ and $\varphi =\tan^{-1}\left(-\frac{5}{12}\right)$.
Question 13(ii)
Express in the form of $r \sin (\theta+\phi)$: $3 \sin \theta+4 \cos \theta$
Solution.
Let \( 3 = r \cos \varphi \) and \( 4 = r \sin \varphi \).
Squaring and adding:
\begin{align*}
& (3)^2 + (4)^2 = r^2 \cos^2 \varphi + r^2 \sin^2 \varphi \\
\implies & 9 + 16 = r^2 \left( \cos^2 \varphi + \sin^2 \varphi \right) \\
\implies & 25 = r^2 \left( 1 \right) \\
\implies & r = \sqrt{25} = 5.
\end{align*}
Also
\begin{align*}
& \frac{4}{3} = \frac{r \sin \varphi}{r \cos \varphi} \\
\implies & \frac{4}{3} = \tan \varphi \\
\implies & \varphi = \tan^{-1} \left( \frac{4}{3} \right).
\end{align*}
Now,
\begin{align*}
& 3 \sin \theta + 4 \cos \theta \\
=& r \cos \varphi \sin \theta + r \sin \varphi \cos \theta \\
=& r \left( \cos \varphi \sin \theta + \sin \varphi \cos \theta \right) \\
=& r \sin \left( \theta + \varphi \right),
\end{align*}
where \( r = 5 \) and \( \varphi = \tan^{-1} \left( \frac{4}{3} \right) \).
Question 13(iii)
Express in the form of $r \sin (\theta+\phi)$: $\sin \theta-\cos \theta$
Solution.
Let \( 1 = r \cos \varphi \) and \( -1 = r \sin \varphi \).
Squaring and adding:
\begin{align*}
& (1)^2 + (-1)^2 = r^2 \cos^2 \varphi + r^2 \sin^2 \varphi \\
\implies & 1 + 1 = r^2 \left( \cos^2 \varphi + \sin^2 \varphi \right) \\
\implies & 2 = r^2 \left( 1 \right) \\
\implies & r = \sqrt{2}.
\end{align*}
Also
\begin{align*}
& \frac{-1}{1} = \frac{r \sin \varphi}{r \cos \varphi} \\
\implies & \frac{-1}{1} = \tan \varphi \\
\implies & \varphi = \tan^{-1}(-1) = -\frac{\pi}{4}.
\end{align*}
Now
\begin{align*}
& \sin \theta - \cos \theta \\
=& r \cos \varphi \sin \theta + r \sin \varphi \cos \theta \\
=& r \left( \cos \varphi \sin \theta + \sin \varphi \cos \theta \right) \\
=& r \sin \left( \theta + \varphi \right),
\end{align*}
where \( r = \sqrt{2} \) and \( \varphi = -\frac{\pi}{4} \).
Go to