Question 1, Review Exercise 6
Solutions of Question 1 of Review Exercise 6 of Unit 06: Permutation and Combination. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1
Select the best matching option.
Chose the correct option.
i. If $3\,\,^nP_3=^nP_4$ then value of $n$ is:
- (a) $5$
- (b) $6$
- (c) $7$
- (d) $8$
(b): $6$
ii. Numbers of ways of arrangement of the word “GARDEN”
- (a) $ 480$
- (b) $600$
- (c) $720$
- (d) $840$
©: $720$
iii. The product of $r$ consective positive numbers is divisible by
- (a) $r!$
- (b)$(r+1)!$
- (c) $r!+1$
- (d) $ 2r!$
(a): $r!$
iv. The total number of $6$-digit number in which all the odd and only odd digits appear is:
- (a) $\dfrac{5}{2}\,\,6!$
- (b) $6!$
- (c) $\dfrac{1}{2}\,\,6!$
- (d) $\dfrac{3}{2}\,\,6!$
(a): $\dfrac{5}{2}\,\,6!$
v. Let $A=\{1,2,3,4,...,20\}. $ Find the number of ways that the integer chosen a prime number is:
- (a) $3$
- (b) $5$
- (c) $7$
- (d) $8$
(d): $8$
vi. From $A=\{1,3,5,7,9\}$ and $B=\{2,4,6,8\}$ if a cartisan product $A\times B$ is chosen, then the number of ways that $a+b=9$ is :
- (a) $0$
- (b) $2$
- (c) $3$
- (d) $4$
©: $3$
vii. A student has to answer $10$ out of $12$ question in an examination such that he must choose at least $4$ from first five questions. The number of choices is:
- (a) $30$
- (b) $35$
- (c) $40$
- (d) $45$
(b): $35$
viii. If $^nC_4=^nC_{10}$, then value of $n$ is:
- (a) $10$
- (b) $12$
- (c) $13$
- (d) $14$
(d): $14$
ix. If $^{15}C_{3r}=^{15}C_{r+3}$, then value of $r$ is:
- (a) $1$
- (b) $2$
- (c) $3$
- (d) $4$
(c): $3$
x. The numbers of ways in which $r$ latters can be posted in $n$ letter boxes in a town is:
- (a) $^nC_r$
- (b) $^nP_r$
- (c) $r^n$
- (d) $n^r$
(c): $r^n$
Go to