Question 1, Review Exercise
Solutions of Question 1 of Review Exercise of Unit 05: Polynomials. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1
Select the best matching option.
Chose the correct option.
i. Factors of $-2-x+x^{2}$ are:
- (a) $(x-2)(x-1)$
- (b) $(x+1)(x+2)$
- (c) $(x+2)(x-1)$
- (d) $(x+1)(x-2)$
(d): $(x+1)(x-2)$
ii. Divide $9 y^{2}+9 y-10$ by $3 y-2$, then remainder is:
- (a) $ 0$
- (b) $1$
- (c) $2$
- (d) $3$
(a): $ 0$
iii. $\frac{x^{2}-x-9}{x-3}=x+2+\frac{?}{x-3}$
- (a) $-27$
- (b)$-3$
- (c) $\frac{3}{x-3}+x+2$
- (d) $ 3$
(b): $-3$
iv. If $3 x^{3}-2 x^{2}+5$ is divided by $x+1$, then $x+1$ will be its:
- (a) divisor as well as factor
- (b) dividend
- (c) quotient
- (d) remainder
(a): divisor as well as factor
v. If 2 is a zero of the polynomial $x^{3}+5 x^{2}-4 x+k$, then the value of $k$ will be:
- (a) $-4$
- (b) $-20$
- (c) $20$
- (d) $0$
(b): $-20$
vi. If $x-b$ is the factor of $q(x)$, then $\mathrm{q}(\mathrm{b})$ is:
- (a) factor
- (b) divisor
- (c) remainder
- (d) dividend
©: remainder
vii. If the expression $2 x^{3}+3 p x^{2}-4 x$ has a remainder of 4 when divided by $x+2$, then $\mathbf{p}=$
- (a) $-2$
- (b) $ 1$
- (c) $-1$
- (d) $ 0$
(b): $ 1$
viii. If $f(x)$ is divided by $x-2$, then remainder is 12 . What is $f(2)$ ?
- (a) $-12$
- (b) $\quad f(-2)$
- (c) $12$
- (d) zero
(c): $12$
Go to