Question 9 and 10, Exercise 4.8
Solutions of Question 9 and 10 of Exercise 4.8 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 9
Evaluate the sum of the series: $$\frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 5}+\frac{1}{3 \cdot 7}+\ldots \ldots \text{ up to } \infty$$
Solution.
Do yourself
Question 10
Evaluate the sum of the series: $\sum_{k=3}^{n} \dfrac{1}{(k+1)(k+2)}$
Solution.
Consider \begin{align*} T_k &= \frac{1}{(k+1)(k+2)}. \end{align*} Resolving it into partial fractions: \begin{align*} \frac{1}{(k+1)(k+2)} = \frac{A}{k+1} + \frac{B}{k+2} \ldots (1) \end{align*} Multiplying both sides by $(k+1)(k+2)$, we get \begin{align*} 1 = (k+2)A + (k+1)B \ldots (2) \end{align*} Now, put $k+1=0 \implies k=-1$ in equation (2): \begin{align*} 1 &= (-1+2)A + 0 \\ \implies A &= 1. \end{align*} Next, put $k+2=0 \implies k=-2$ in equation (2): \begin{align*} 1 &= 0 + (-2+1)B \\ \implies B &= -1. \end{align*} Using the values of $A$ and $B$ in equation (1), we get \begin{align*} \frac{1}{(k+1)(k+2)} &= \frac{1}{k+1} - \frac{1}{k+2}. \end{align*} Thus, \begin{align*} T_k &= \frac{1}{k+1} - \frac{1}{k+2}. \end{align*} Now \begin{align*} &\sum_{k=3}^{n} \dfrac{1}{(k+1)(k+2)} = \sum_{k=3}^n T_k \\ &= \sum_{k=3}^n \left( \frac{1}{k+1} - \frac{1}{k+2} \right) \\ &= \left( \frac{1}{4} - \frac{1}{5} \right)+ \left( \frac{1}{5} - \frac{1}{6} \right)+\left( \frac{1}{6} - \frac{1}{7} \right) \\ &\quad +...+\left( \frac{1}{n} - \frac{1}{n+1} \right)+ \left( \frac{1}{n+1} - \frac{1}{n+2} \right) \\ &=\frac{1}{4} - \frac{1}{n+2} \\ &=\frac{n+2-4}{4(n+2)} \\ &=\frac{n-2}{4(n+2)} \\ \end{align*} Hence, the required sum $\dfrac{n-2}{4(n+2)}$.
Go to