Question 5 and 6, Exercise 4.8
Solutions of Question 5 and 6 of Exercise 4.8 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 5
Using the method of difference, find the sum of the series: $3+4+6+10+18+34+66+\dots$ to $n$ term.
Solution.
Let $$ S_{n}=3+4+6+10+18+\ldots +T_{n} $$ Also $$ S_{n}=3+4+6+10+\ldots +T_{n-1}+T_{n}. $$ Subtracting the second expression from the first expression, we have \begin{align*} S_{n}-S_{n}& =3+4+6+10+18+\ldots +T_{n} \\ & -\left(3+4+6+10+\ldots +T_{n-1}+T_{n}\right) \end{align*} \begin{align*} \implies 0=&3+(4-3)+(6-4)+(10-6)+(18-10) \\ & +\ldots+(T_{n}-T_{n-1})-T_{n}. \\ \implies 0=&3+(1+2+4+8+\ldots \text { up to } (n-1) \text { terms })-T_{n} \end{align*} Then \begin{align*} T_{n} & =3+(1+2+4+8+\ldots \text { up to }(n-1) \text { terms }) \\ & =3+\frac{1(2^{n-1}-1)}{2-1} \quad\left(\because S_{n}=\frac{a(r^n-1)}{r-1}\right) \\ & =3+(2^{n-1}-1) \\ & =2^{n-1}+2. \end{align*} Thus, the kth term of the series: $$ T_{k}=2^{k-1}+2. $$ Now taking the sum, we get \begin{align*} S_{n} & =\sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n} (2^{k-1}+2) \\ & =\sum_{k=1}^{n} 2^{k-1} + \sum_{k=1}^{n} 2 \\ & =\left(1+2+2^2+2^3+...+\text{ up to } n \text{ terms}\right) + 2n \\ & =\frac{1(2^n-1)}{2-1} + 2n \\ & =2^n - 1 + 2n. \end{align*} Hence, \( S_n = 2^n - 1 + 2n \).
Question 6
Using the method of difference, find the sum of the series: $1+4+8+14+24+42+76+\ldots$ to $n$ term.
Solution. Let $$ S_{n}=1+4+8+14+24+42+\ldots +T_{n} $$ Also $$ S_{n}=1+4+8+14+24+42+ldots +T_{n-1}+T_{n}. $$ Subtracting the second expression from the first expression, we have \begin{align*} S_{n}-S_{n}& =1+4+8+14+24+42+\ldots +T_{n} \\ & -\left(1+4+8+14+24+\ldots +T_{n-1}+T_{n}\right) \end{align*} \begin{align*} \implies 0=&1+(4-1)+(8-4)+(14-8)+(24-14)\\ &+ (42-24)+\ldots+(T_{n}-T_{n-1})-T_{n}. \\ \implies 0=&1+(3+4+6+10+18+ \ldots \text{ up to } (n-1) \text{ terms })-T_{n}. \end{align*} Then \begin{align*} T_{n} & =1+(3+4+6+10+18+\ldots \text{ up to }(n-1) \text{ terms }) \\ & =1+2^{n-1}-1+2(n-1) \quad \text{(from previous question)} \\ & =2^{n-1}+2n-2 \\ \end{align*} Thus, the \(k\)-th term of the series is: $$ T_{k}=2^{k-1}+2k-2 . $$ Now, taking the sum, we get \begin{align*} S_{n} & =\sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n} \left( 2^{k-1}+2k-2 \right) \\ &= \sum_{k=1}^{n} 2^{k-1} + 2 \sum_{k=1}^{n} k - 2 \sum_{k=1}^{n} 1 \\ &=(1+2+2^2+2^3+...\text{ to n terms})+2\frac{n(n-1)}{2} -2n \\ &=\frac{1(2^n-1)}{2-1}+n(n-1)-2n\\ &=2^n-1+n^2-n-2n\\ &=2^n+n^2-3n-1. \end{align*} Thus $ S_{n} = 2^n+n^2-3n-1. $
Go to