Question 1 and 2, Exercise 4.8
Solutions of Question 1 and 2 of Exercise 4.8 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1
Using the method of difference, find the sum of the series: $3+7+13+21+\ldots$ to $n$ term.
Solution.
Let $$ S_{n}=3+7+13+21+31+\ldots +T_{n} $$ Also $$ S_{n}=3+7+13+21+\ldots +T_{n-1}+T_{n}.$$ Subtracting second expression from the first expression, we have \begin{align*} S_{n}-S_{n}& =3+7+13+21+31+\ldots +T_{n} \\ & -\left(3+7+13+21+\ldots +T_{n-1}+T_{n}\right) \end{align*} \begin{align*} \implies 0=&3+(7-3)+(13-7)+(21-13) \\ &+(31-21)+\ldots +\left(T_{n}-T_{n-1}\right)-T_{n}. \\ \implies 0=&3+(4+6+8+10+\ldots \text { up to } (n-1) \text { terms })-T_{n} \end{align*} Then \begin{align*} T_{n} & =3+(4+6+8+10+\ldots \text { up to }(n-1) \text { terms }) \\ & =3+\frac{n-1}{2}[2(4)+(n-1-1)(2)] \quad\left(\because S_{n}=\frac{n}{2}[2 a+(n-1) d]\right) \\ & =3+\frac{n-1}{2}[8+(n-2)(2)] \\ & =3+\frac{n-1}{2}[2n+4] \\ & =3+(n-1)(n+2) \\ & =3+n^2-n+2n-2 \\ & =n^2+n+1 \end{align*} Thus, the kth term of series: $$ T_{k}=k^2++k+1 $$ Now taking sum, we get \begin{align*} S_{n} & =\sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n} (k^2++k+1) \\ & =\sum_{k=1}^{n} k^2+\sum_{k=1}^{n} k+\sum_{k=1}^{n} 1 \\ & =\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}+n\\ & =\frac{n}{6}[(n+1)(2n+1)+3(n+1)+6] \\ & =\frac{n}{6}(2n^2+2n+n+1+3n+3+6) \\ & =\frac{n}{6}(2n^2+6n+10) \\ & =\frac{n}{3}(n^2+3n+5) \end{align*} Hence the sum of given series is $\dfrac{n}{3}(n^2+3n+5)$.
Question 2
Using the method of difference, find the sum of the series: $1+4+10+22+\ldots$ to $n$ term.
Solution.
Let $$ S_{n}=1+4+10+22+46+\ldots +T_{n} $$ Also $$ S_{n}=1+4+10+22+\ldots +T_{n-1}+T_{n}. $$ Subtracting second expression from the first expression, we have \begin{align*} S_{n}-S_{n}& =1+4+10+22+46+\ldots +T_{n} \\ & -\left(1+4+10+22+\ldots +T_{n-1}+T_{n}\right) \end{align*} \begin{align*} \implies 0=&1+(4-1)+(10-4)+(22-10)+(46-33) \\ & +\ldots+(T_{n}-T_{n-1})-T_{n}. \\ \implies 0=&1+(3+6+12+24+\ldots \text { up to } (n-1) \text { terms })-T_{n} \end{align*} Then \begin{align*} T_{n} & =1+(3+6+12+24+\ldots \text { up to }(n-1) \text { terms }) \\ & =1+\frac{3(2^{n-1}-1)}{2-1} \quad\left(\because S_{n}=\frac{a(r^n-1)}{r-1}\right) \\ & =1+3(2^{n-1}-1) \\ & =1+3\cdot 2^{n-1}-3 \\ & =3\cdot 2^{n-1}-2. \end{align*} Thus, the kth term of series: $$ T_{k}=3\cdot 2^{k-1}-2 $$ Now taking sum, we get \begin{align*} S_{n} & =\sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n} (3\cdot 2^{k-1}-2) \\ & =3\sum_{k=1}^{n} 2^{k-1}- 2\sum_{k=1}^{n} 1 \\ & =3(1+2+2^2+2^3+... \text{ up to } n \text{ terms}) -2n\\ & =3\frac{(1)(2^n-1)}{2-1}-2n \\ & =3(2^n-1)-2n \end{align*} Hence the sum of given series is $3(2^n-1)-2n$.
Go to