Question 11, 12 and 13, Exercise 4.5
Solutions of Question 11, 12 and 13 of Exercise 4.5 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 11
Find $a_{1}$ for the geometric series: $S_{n}=244, r=-3, n=5$
Solution.
Given: $S_{n}=244$, $r=-3$, $n=5$.
We know
$$ S_n =\frac{a_1(1-r^n)}{1-r}, \quad r\neq 1.$$
Thus
\begin{align*}
& 244=\frac{a_1(1-(-3)^5)}{1-(-3)} \\
\implies & 244=\frac{a_1(1+243)}{4} \\
\implies & 976=244a_1\\
\implies & a_1=4.\\
\end{align*}
Hence $a_1=4$.
Question 12
Find $a_{1}$ for the geometric series: $S_{n}=32, r=2, n=6$
Solution.
Given: $S_{n}=32$, $r=2$, $n=6$.
We know
$$S_n = \frac{a_1(1-r^n)}{1-r}, \quad r \neq 1.$$
Thus,
\begin{align*}
32 &= \frac{a_1(1-2^6)}{1-2} \\
&= \frac{a_1(1-64)}{-1} \\
&= \frac{a_1(-63)}{-1} \\
&= 63a_1 \\
\implies a_1 &= \frac{32}{63}\\
\implies a_1&= 0.51
\end{align*}
Hence, $a_1 = 0.51$
Question 13
Find $a_{1}$ for the geometric series: $a_{n}=324, r=3, S_{n}=484$
Solution.
Given: $a_{n}=324$, $r=3$, $S_{n}=484$.
As we know $$ S_n =\frac{a_1-a_n r}{1-r}, \quad r\neq 1.$$ Thus \begin{align*} & 484=\frac{a_1-(324)(3)}{1-3} \\ \implies & 484=\frac{a_1-972}{-2} \\ \implies & a_1-972=-968 \\ \implies & a_1=-968+972 \\ \implies & a_1=4 \\ \end{align*} Hence $a_1=4$.
Go to