Question 7 and 8, Exercise 4.5
Solutions of Question 7 and 8 of Exercise 4.5 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 7
Find the sum of the geometric series. $a_{1}=16, r=-\frac{1}{2}, n=10$
Solution.
Given $a_1 = 16$, $r = -\frac{1}{2}$ and $n = 10$.
The formula to find the sum of $n$ terms of a geometric series is
$$S_n = \frac{a_1 \left(1 - r^n\right)}{1 - r}, \quad r \neq 1.$$
Thus,
\begin{align*}
S_{10} &= \frac{16 \left(1 - \left(-\frac{1}{2}\right)^{10}\right)}{1 - \left(-\frac{1}{2}\right)} \\
&= \frac{16 \left(1 - \frac{1}{1024}\right)}{1 + \frac{1}{2}} \\
&= \frac{16 \cdot \frac{1023}{1024}}{\frac{3}{2}} \\
&= \frac{32736}{3072} \\
&= 10.66667.
\end{align*}
Hence, the required sum is approximately $10.67$
Question 8
Find the sum of the geometric series. $a_{1}=243, r=-\frac{2}{3}, n=5$
Solution.
Given $a_1 = 243$, $r = -\frac{2}{3}$, and $n = 5$.
The formula to find the sum of $n$ terms of a geometric series is $$S_n = \frac{a_1 \left(1 - r^n\right)}{1 - r}, \quad r \neq 1.$$ Thus, \begin{align*} S_{5} &= \frac{243 \left(1 - \left(-\frac{2}{3}\right)^{5}\right)}{1 - \left(-\frac{2}{3}\right)} \\ &= \frac{243 \left(1 +\frac{32}{243}\right)}{1 + \frac{2}{3}} \\ &= \frac{243 \cdot \frac{275}{243}}{\frac{5}{3}} \\ &= 165. \end{align*} Hence, the required sum is $165$.
Go to