Question 1, Review Exercise
Solutions of Question 1 of Review Exercise of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 1
Select the best matching option. Chose the correct option.
i. If order of $A$ is $m \times n$ and order of $B$ is $n \times p$ then order of $A B$ is:
- (a) $n \times p$
- (b) $m \times p$
- (c) $p \times m$
- (d) $n \times n$
(b): $m \times p$
ii. If $A$ is a row matrix of order $1 \times n$ then order of $A^{t} A$ is:
- (a) $1 \times n$
- (b) $n \times 1$
- (c) $1 \times 1$
- (d) $n \times n$
(d): $n \times n$
iii. For an element $a_{i j}$ of a square matrix $A$ :
- (a) $a_{i j}=(-1)^{i+j} A_{i j}$
- (b)$a_{i j}=(-1)^{i+j} M_{i j}$
- (c) $\frac{A_{i j}}{M_{i j}}=(-1)^{i+j}$
- (d) $a_{i j}=M_{i j}$
(d): $a_{i j}=M_{i j}$
iv. If $A$ is any matrix then $A$ and $A^{t}$ are always conformable for:
- (a) addition
- (b) multiplication
- (c) subtraction
- (d) all of these
(b): multiplication
v. If $A$ is a square matrix of order $3 \times 3$ and $|A|=3$ then value of $|\operatorname{adj} A|$ is:
- (a) $3$
- (b) $1 / 3$
- (c) $9$
- (d) $6$
©: $9$
vi. For the square matrix $A$ of order $3 \times 3$ with $|A|=9 ; A_{21}=2 ; A_{22}=3 ; A_{23}=-1$; $a_{21}=1 ; a_{23}=2$, the value of $a_{22}$ is:
- (a) $2$
- (b) $3$
- (c) $9$
- (d) $-1$
(b): $3$
vii. System of homogeneous linear equations has non-trivial solution if:
- (a) $|A|>0$
- (b) $|A|<0$
- (c) $|A|=0$
- (d) $|A| \neq 0$
(d): $|A| \neq 0$
viii. For non-homogeneous system of equations; the system is inconsistent if:
- (a) $\operatorname{RankA}=\operatorname{Rank} A_{b}$$
- (b) $\operatorname{RankA} \neq \operatorname{Rank} A_{b}$
- (c) RankA < no. of variables
- (d) Rank $A_{b}>$ no. of variables
(c): RankA < no. of variables
ix. For a system of non-homogeneous equations with three variables system will have unique solution if:
- (a) $\operatorname{RankA}<3$
- (b) $\operatorname{Rank} A_{b}<3$
- (c) $\operatorname{RankA}=\operatorname{RankA}_{b}=3$
- (d) $\operatorname{Rank} A=\operatorname{Rank} A_{b}<3$
(c):$\operatorname{RankA}=\operatorname{RankA}_{b}=3$
x. A system of non- homogeneous equation having infinite many solutions can be solved by using:
- (a) Inversion method
- (b) Cramer's rule
- (c) Gauss-Jordan method
- (d) all of these
(d): all of these
Go to