Question 2, Exercise 2.6
Solutions of Question 2 of Exercise 2.6 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 2(i)
Find the value of $\lambda$ for which the system of homogeneous linear equation may have non-trivial solution. Also solve the system for value of $\lambda$.
$2 x_{1}-\lambda x_{2}+x_{3}=0$
$2 x_{1}+3 x_{2}-x_{3}=0$
$3 x_{1}-2 x_{2}+4 x_{3}=0$
Solution. \begin{align*} &2 x_{1}-\lambda x_{2}+x_{3}=0 \cdots(i)\\ &2 x_{1}+3 x_{2}-x_{3}=0\cdots(ii)\\ &3 x_{1}-2 x_{2}+4 x_{3}=0\cdots(iii)\\ \end{align*} Homogenous system has non-trivial solution, if \begin{align*} &\left| \begin{array}{ccc} 2 & -\lambda & 1 \\ 2 & 3 & -1 \\ 3 & -2 & 4 \end{array} \right|=0\\ &2(12-2)+\lambda(8+3)+1(-4-9)=0\\ &20+11\lambda-13=0\\ &\lambda =-\frac{7}{11}\\ \end{align*} The system becomes
\begin{align*}
&2 x_{1}+ \frac{7}{11}x_{2}+x_{3}=0 \cdots(iv)\\
&2 x_{1}+3 x_{2}-x_{3}=0\cdots(v)\\
&3 x_{1}-2 x_{2}+4 x_{3}=0\cdots(vi)\\
\end{align*}
(iv)-(v), we have
\begin{align*}
&\begin{array}{cccc}
2x_1&+\frac{7}{11} x_{2}&+ x_{3}&=0\\
\mathop+\limits_{-}2x_1&\mathop+\limits_{-}3x_2&\mathop-\limits_{+}x_3&=0 \\ \hline
&-\frac{26}{11}x_2&+2x_3 &=0\\
\end{array} \\
\implies &x_2=\frac{11}{13}x_3\\
\end{align*}
Put the value of $x_2$ in (vi), we have
\begin{align*}
&3 x_{1}-2(\frac{11}{13})x_{3}+4 x_{3}=0\\
&3 x_{1}+ \frac{30}{11} x_{3}=0\\
& x_{1}=- \frac{10}{11} x_{3}\\
\end{align*}
Hence S.S$=\left[ \begin{array}{c}
- \dfrac{10}{11} x_{3}
\dfrac{11}{13}x_3
x_3
\end{array} \right]$
Question 2(ii)
Find the value of $\lambda$ for which the system of homogeneous linear equation may have non-trivial solution. Also solve the system for value of $\lambda$.
$x_{1}-4 x_{2}+3 x_{3}=0$
$2 x_{1}+\lambda x_{2}+x_{3}=0$
$x_{1}-2 x_{2}+\lambda x_{3}=0$
Solution. \begin{align*} &x_{1}-4 x_{2}+3 x_{3}=0 \quad \text{(i)}\\ &2 x_{1}+\lambda x_{2}+x_{3}=0 \quad \text{(ii)}\\ &x_{1}-2 x_{2}+\lambda x_{3}=0 \quad \text{(iii)} \end{align*} For the system to have a non-trivial solution, the determinant must be zero: \begin{align*} &\left| \begin{array}{ccc} 1 & -4 & 3 \\ 2 & \lambda & 1 \\ 1 & -2 & \lambda \end{array} \right| = 0\\ &1\left(\lambda^2 + 2\right) + 4\left(2\lambda - 1\right) + 3\left(-4 -\lambda \right) = 0\\ &\lambda^2 + 2 + 8\lambda - 4 - 12-3\lambda = 0\\ &\lambda^2 + 5\lambda - 14 = 0\\ &\lambda = \frac{-5 \pm \sqrt{25 + 56}}{2} \\ &\lambda = \frac{-5 \pm \sqrt{81}}{2} \\ &\lambda = \frac{-5 \pm 9}{2} \\ &\lambda = 2 \quad \lambda =-7 \end{align*} If $\lambda=2$, put the value of $\lambda$ we have \begin{align*} x_{1} - 4x_{2} + 3x_{3} &= 0 \quad \text{(i)} \\ 2x_{1} + 2x_{2} + x_{3} &= 0 \quad \text{(ii)} \\ x_{1} - 2x_{2} + 2x_{3} &= 0 \quad \text{(iii)} \end{align*} By using (i), we have \begin{align*} x_{1} &= 4x_{2} - 3x_{3} \quad \text{(iv)} \end{align*} Put the value if $x_1$ in (ii), we have \begin{align*} 2(4x_{2} - 3x_{3}) + 2x_{2} + x_{3} &= 0 \\ 8x_{2} - 6x_{3} + 2x_{2} + x_{3} &= 0 \\ 10x_{2} - 5x_{3} &= 0 \\ x_{2} &= \frac{1}{2}x_{3} \end{align*} Put the value of $x_2$ in $x_1$ \begin{align*} x_{1} &= 4(\frac{1}{2}x_{3}) - 3x_{3}\\ &=-x_3 \end{align*} Henc solution set is: \begin{align*} \left[ \begin{array}{c} -x_3 \\ \frac{1}{2}x_3 \\ x_3 \end{array} \right] \end{align*} If $\lambda =-7$ \begin{align*} x_{1} - 4x_{2} + 3x_{3} &= 0 \quad \text{(1)} \\ 2x_{1} - 7x_{2} + x_{3} &= 0 \quad \text{(2)} \\ x_{1} - 2x_{2} - 7x_{3} &= 0 \quad \text{(3)} \end{align*} From equation (1), we have \begin{align*} x_{1} &= 4x_{2} - 3x_{3} \end{align*} Put the value of $x_1$ in (2) \begin{align*} 2(4x_{2} - 3x_{3}) - 7x_{2} + x_{3} &= 0 \\ 8x_{2} - 6x_{3} - 7x_{2} + x_{3} &= 0 \\ x_{2} - 5x_{3} &= 0 \\ x_{2} &= 5x_{3} \end{align*} Put the value of $x_2$ in $x_1$, we have \begin{align*} x_{1} &= 4x_{2} - 3x_{3} &=20x_3-3x_3\\ &=17x_3\end{align*} Hence solution set is \begin{align*} \left[ \begin{array}{c} 17x_3 \\ 5x_3 \\ x_3 \end{array} \right] \end{align*}
Go to