The 404 Manager plugin uses the sqlite plugin for all new functions above the version v1.1.0 (09-07-2016). You need do install it if you want to use them. See the changes file for the list of new functionalities. [:2]

Question 9, Exercise 2.2

Solutions of Question 9 of Exercise 2.2 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Consider any two particular matrices $A$ and $B$ of your choice of order $3 \times 3$ and show that $(A+B)^{t}=A^{t}+B^{t}$.

Solution.

Let: \begin{align*} A &= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \\ B &= \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}\end{align*} \begin{align*} A + B &= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{pmatrix} \end{align*} \begin{align*} (A + B)^t &= \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & a_{31} + b_{31} \\ a_{12} + b_{12} & a_{22} + b_{22} & a_{32} + b_{32} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{pmatrix} \end{align*} \begin{align*} A^t &= \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}\\ B^t &= \begin{pmatrix} b_{11} & b_{21} & b_{31} \\ b_{12} & b_{22} & b_{32} \\ b_{13} & b_{23} & b_{33} \end{pmatrix} \\ A^t + B^t &= \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & a_{31} + b_{31} \\ a_{12} + b_{12} & a_{22} + b_{22} & a_{32} + b_{32} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{pmatrix} \\ \text{and}\\ (A + B)^t &= \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & a_{31} + b_{31} \\ a_{12} + b_{12} & a_{22} + b_{22} & a_{32} + b_{32} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{pmatrix} \end{align*} Thus, $\quad(A + B)^t = A^t + B^t$.