Question 9, Exercise 2.2

Solutions of Question 9 of Exercise 2.2 of Unit 02: Matrices and Determinants. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Consider any two particular matrices $A$ and $B$ of your choice of order $3 \times 3$ and show that $(A+B)^{t}=A^{t}+B^{t}$.

Solution.

Let: \begin{align*} A &= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \\ B &= \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}\end{align*} \begin{align*} A + B &= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{pmatrix} \end{align*} \begin{align*} (A + B)^t &= \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & a_{31} + b_{31} \\ a_{12} + b_{12} & a_{22} + b_{22} & a_{32} + b_{32} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{pmatrix} \end{align*} \begin{align*} A^t &= \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}\\ B^t &= \begin{pmatrix} b_{11} & b_{21} & b_{31} \\ b_{12} & b_{22} & b_{32} \\ b_{13} & b_{23} & b_{33} \end{pmatrix} \\ A^t + B^t &= \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & a_{31} + b_{31} \\ a_{12} + b_{12} & a_{22} + b_{22} & a_{32} + b_{32} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{pmatrix} \\ \text{and}\\ (A + B)^t &= \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & a_{31} + b_{31} \\ a_{12} + b_{12} & a_{22} + b_{22} & a_{32} + b_{32} \\ a_{13} + b_{13} & a_{23} + b_{23} & a_{33} + b_{33} \end{pmatrix} \end{align*} Thus, $\quad(A + B)^t = A^t + B^t$.