Question 8, Exercise 1.4
Solutions of Question 8 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 8(i)
Calculate the position of a particle from mean position when amplitude is $0.004 \mathrm{~mm}$ and angle is: $\dfrac{\pi}{4}$
Solution. Here we have $$x_{\max}=0.004, \quad \theta=\dfrac{\pi}{4}.$$ By using the formula \begin{align} x&=x_{\max} e^{i\theta} \\ &=0.004 e^{i\dfrac{\pi}{4}} \\ &=\frac{4}{1000} \left(\cos\left(\dfrac{\pi}{4}\right) +i \sin\left(\dfrac{\pi}{4}\right)\right) \\ &=\frac{1}{250} \left(\dfrac{1}{\sqrt{2}} +i \dfrac{1}{\sqrt{2}}\right) \\ &=\frac{1}{250\sqrt{2}}(1 +i) \\ &=\frac{\sqrt{2}}{500}(1 +i). \end{align} Hence mean position of particle is $\frac{\sqrt{2}}{500}(1 +i)$.
Question 8(ii)
Calculate the position of a particle from mean position when amplitude is $0.004 \mathrm{~mm}$ and angle is: $\dfrac{\pi}{3}$
Solution.
$$x_{\max}=0.004, \quad \theta=\dfrac{\pi}{3}.$$ By using the formula \begin{align} x &= x_{\max} e^{i\theta} \\ &= 0.004 e^{i\dfrac{\pi}{3}} \\ &= \dfrac{4}{1000} (\cos(\dfrac{\pi}{3}) + i \sin(\dfrac{\pi}{3})) \\ &= \dfrac{4}{1000}(\dfrac{1}{2} + i \dfrac{\sqrt{3}}{2}) \\ &= \dfrac{1}{250} (\dfrac{1}{2} + i \dfrac{\sqrt{3}}{2}) \\ &= \dfrac{1}{500} + i \dfrac{\sqrt{3}}{500} \\ &= \dfrac{1}{500}\{1 + i\sqrt{3}\} \end{align} Hence the position of the particle from the mean position is $\dfrac{1}{500}\{1 + i\sqrt{3}\}$
Question 8(iii)
Calculate the position of a particle from mean position when amplitude is $0.004 \mathrm{~mm}$ and angle is: $\dfrac{\pi}{6}$
Solution.
$$x_{\max}=0.004, \quad \theta=\dfrac{\pi}{6}.$$ By using the formula \begin{align} x &= x_{\max} e^{i\theta} \\ &= 0.004 e^{i\dfrac{\pi}{6}} \\ &= \dfrac{4}{1000} (\cos(\dfrac{\pi}{6}) + i \sin(\dfrac{\pi}{6})) \\ &= \dfrac{4}{1000}(\dfrac{\sqrt{3}}{2} + i \dfrac{1}{2}) \\ &= \dfrac{1}{250} (\dfrac{\sqrt{3}}{2} + i \dfrac{1}{2}) \\ &= \dfrac{\sqrt{3}}{500} + i \dfrac{1}{500} \\ &= \dfrac{1}{500}\{\sqrt{3} + i\} \end{align} Hence the position of the particle from the mean position is $\dfrac{1}{500}\{\sqrt{3} + i\}$
Go to