Question 4, Exercise 1.4

Solutions of Question 4 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

If 1+z1z=cos2θ+isin2θ, show that z=itanθ

Solution.

Given 1+z1z=cos2θ+isin2θ1+z1z=ei2θ(1+z)=(1z)ei2θz+zei2θ=ei2θ1  z=ei2θ1ei2θ+1=cos2θ+isin2θ1cos2θ+isin2θ+1=cos2θsin2θ+i2sinθcosθ1cos2θsin2θ+i2sinθcosθ+1=(1cos2θ)sin2θ+i2sinθcosθcos2θ+1sin2θ+i2sinθcosθ=sin2θsin2θ+i2sinθcosθcos2θ+cos2θ+i2sinθcosθ=2sin2θ+i2sinθcosθ2cos2θ+i2sinθcosθ)=2sinθ(sinθ+icosθ2cosθ(cosθ+i2sinθ)=tanθ(i2sinθ+icosθcosθ+isinθ)=itanθ(cosθ+isinθcosθ+isinθ) This implies z=itanθ.