Question 4, Exercise 1.4
Solutions of Question 4 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 4
If 1+z1−z=cos2θ+isin2θ, show that z=itanθ
Solution.
Given 1+z1−z=cos2θ+isin2θ⟹1+z1−z=ei2θ⟹(1+z)=(1−z)ei2θ⟹z+zei2θ=ei2θ−1 z=ei2θ−1ei2θ+1=cos2θ+isin2θ−1cos2θ+isin2θ+1=cos2θ−sin2θ+i2sinθcosθ−1cos2θ−sin2θ+i2sinθcosθ+1=−(1−cos2θ)−sin2θ+i2sinθcosθcos2θ+1−sin2θ+i2sinθcosθ=−sin2θ−sin2θ+i2sinθcosθcos2θ+cos2θ+i2sinθcosθ=−2sin2θ+i2sinθcosθ2cos2θ+i2sinθcosθ)=2sinθ(−sinθ+icosθ2cosθ(cosθ+i2sinθ)=tanθ(i2sinθ+icosθcosθ+isinθ)=itanθ(cosθ+isinθcosθ+isinθ) This implies z=itanθ.
Go to