Question 2, Exercise 1.4
Solutions of Question 2 of Exercise 1.4 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 2(i)
Write the complex number $\left(\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}\right)\left(\cos \dfrac{\pi}{3}+i \sin \dfrac{\pi}{3}\right)$ in rectangular form.
Solution.
Let $z_1=\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}=e^{i\frac{\pi}{6}}$ and $z_2=\cos \dfrac{\pi}{3}+i \sin \dfrac{\pi}{3}=e^{i\frac{\pi}{3}}$. Then \begin{align} z_1 z_2 & = e^{i\frac{\pi}{6}} \cdot e^{i\frac{\pi}{3}} \\ & = e^{i\left(\frac{\pi}{6}+\frac{\pi}{3}\right)} \\ & = e^{i\frac{\pi}{2}} \\ & = \cos \dfrac{\pi}{2} +i \sin \dfrac{\pi}{2} \\ & = 0 + i (1) = i. \end{align} Hence, we proved $$ \left(\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}\right)\left(\cos \dfrac{\pi}{3}+i \sin \dfrac{\pi}{3}\right) = i. $$
Alternative Method:
\begin{align} &\left(\cos \dfrac{\pi}{6} + i \sin \dfrac{\pi}{6}\right)\left(\cos \dfrac{\pi}{3} + i \sin \dfrac{\pi}{3}\right)\\ =& \left(\cos \dfrac{\pi}{6} \cos \dfrac{\pi}{3} - \sin \dfrac{\pi}{6} \sin \dfrac{\pi}{3}\right) + i \left(\sin \dfrac{\pi}{6} \cos \dfrac{\pi}{3} + \cos \dfrac{\pi}{6} \sin \dfrac{\pi}{3}\right) \\ =& \left(\dfrac{\sqrt{3}}{2} \cdot \dfrac{1}{2} - \dfrac{1}{2} \cdot \dfrac{\sqrt{3}}{2}\right) + i \left(\dfrac{1}{2} \cdot \dfrac{1}{2} + \dfrac{\sqrt{3}}{2} \cdot \dfrac{\sqrt{3}}{2}\right) \\ =& \left(\dfrac{\sqrt{3}}{4} - \dfrac{\sqrt{3}}{4}\right) + i \left(\dfrac{1}{4} + \dfrac{3}{4}\right) \\ =& 0 + i \cdot 1 \\ =& i \end{align} Which is rectangular form.
Question 2(ii)
Write the complex number $\dfrac{\cos \dfrac{\pi}{6} - i \sin \dfrac{\pi}{6}}{2\left(\cos \dfrac{\pi}{3}+i \sin \dfrac{\pi}{3}\right)}$ in rectangular form.
Solution.
\begin{align} &\dfrac{\cos \dfrac{\pi}{6} - i \sin \dfrac{\pi}{6}}{2\left(\cos \dfrac{\pi}{3} + i \sin \dfrac{\pi}{3}\right)}\\ =&\dfrac{\cos (-\dfrac{\pi}{6}) + i \sin (-\dfrac{\pi}{6})}{2\left(\cos \dfrac{\pi}{3} + i \sin \dfrac{\pi}{3}\right)}\\ =& \dfrac{1}{2} \left[\cos \left(-\dfrac{\pi}{6} -\dfrac{\pi}{3}\right) + i \sin \left(-\dfrac{\pi}{6}- \dfrac{\pi}{3}\right)\right] \\ =& \dfrac{1}{2} \left[\cos \left(-\dfrac{3\pi}{6}\right) + i \sin \left(\dfrac{-3\pi}{6}\right)\right] \\ =& \dfrac{1}{2} \left[\cos \left(\dfrac{-\pi}{2}\right) + i \sin \left(\dfrac{-\pi}{2}\right)\right] \\ =& \dfrac{1}{2} \left[0 - i (1)\right] \\ =& -\dfrac{1}{2}i \end{align} Which is rectangular form.
Go to