Question 7, Exercise 1.1
Solutions of Question 7 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 7(i)
Find the magnitude of the $11+12 i$.
Solution.
Suppose $$z=11+12i$$ Then \begin{align}|z|&= \sqrt{(11)^2+(12)^2}\\ &=\sqrt{265}\end{align} Hence $|11+12 i|=\sqrt{265}$.
Question 7(ii)
Find the magnitude of the $(2+3 i)-(2+6 i)$.
Solution. Suppose $z=(2+3i)−(2+6i)$, then \begin{align}z&=2+3i−2−6i\\ &=-3i \end{align} Now \begin{align} |z| &= \sqrt{0^2+(-3)^2} \\ &= \sqrt{9} = 3. \end{align} Hence $$|(2+3 i)-(2+6 i)|=3.$$
Question 7(iii)
Find the magnitude of the $(2-i)(6+3 i)$.
Solution. Suppose $$z=(2-i)(6+3 i),$$ then \begin{align} |z|&=|(2-i)(6+3 i)|\\ &=|(2-i)| |(6+3 i)|\\ &=\sqrt{2^2+1^2} \sqrt{6^2+3^2} \\ &=\sqrt{5}\sqrt{45}\\ &=\sqrt{5}\cdot 3\sqrt{5} = 15.\end{align} Hence $|(2-i)(6+3 i)|=15$.
Question 7(iv)
Find the magnitude of the $\dfrac{3-2 i}{2+i}$.
Solution.
Suppose $$z=\dfrac{3-2 i}{2+i},$$ then \begin{align} |z|&=\left|\dfrac{3-2 i}{2+i} \right| \\ &=\dfrac{|3-2 i|}{|2+i|}\\ &=\dfrac{\sqrt{3^2+(-2)^2}}{\sqrt{2^2+1^2}}\\ &=\dfrac{\sqrt{13}}{\sqrt{5}} = \sqrt{\dfrac{13}{5}}.\end{align} Hence $\left|\dfrac{3-2 i}{2+i} \right|=\sqrt{\dfrac{13}{5}}$.
Question 7(v)
Find the magnitude of the $(\sqrt{3}-\sqrt{-8})(\sqrt{3}+\sqrt{-8})$.
Solution. Suppose \begin{align}z&=(\sqrt{3}-\sqrt{-8})(\sqrt{3}+\sqrt{-8}) \\ &=(\sqrt{3}-\sqrt{8}i)(\sqrt{3}+\sqrt{8}i) \\ &=(\sqrt{3})^2-(\sqrt{8}i)^2\\ &=3+8 = 11.\end{align} Then $$|z|=|11|=11.$$ Hence $|(\sqrt{3}-\sqrt{-8})(\sqrt{3}+\sqrt{-8})|=11$.
Go to