Question 3, Exercise 1.1
Solutions of Question 3 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.
Question 3(i)
Simplify the following $\dfrac{(2+i)(3-2i)}{1+i}$
Solution.
\begin{align}&\dfrac{(2+i)(3-2i)}{1+i}\\
=&\dfrac{6-2i^2+3i-4i}{1+i}\\
=&\dfrac{8-i}{1+i}\\
=&\dfrac{8-i}{1+i}\times \dfrac{1-i}{1-i}\\
=&\dfrac{8+i^2-8i-i}{1^2-i^2}\\
=&\dfrac{7-9i}{2}\\
=&\dfrac{7}{2}-\dfrac{9}{2}i\end{align}
Question 3(ii)
Simplify the following $\dfrac{1+i}{(2+i)^2}$
Solution.
\begin{align}&\dfrac{1+i}{(2+i)^2}\\
=&\dfrac{1+i}{4+i^2+4i}\\
=&\dfrac{1+i}{3+4i}\\
=&\dfrac{1+i}{3+4i}\times \dfrac{3-4i}{3-4i}\\
=&\dfrac{3-4i^2-4i+3i}{9-16i^2}\\
=&\dfrac{7-i}{25}\\
=&\dfrac{7}{25}-\dfrac{1}{25}i.
\end{align}
Question 3(iii)
Simplify the following $\dfrac{1}{3+i}-\dfrac{1}{3-i}$
Solution.
\begin{align}&\dfrac{1}{3+i}-\dfrac{1}{3-i}\\
=&\dfrac{(3-i)-(3+i)}{3^2-i^2}\\
=&\dfrac{-2i}{9+1}\\
=&-\dfrac{2}{10}i\\
=&-\dfrac{1}{5}i\end{align}
Question 3(iv)
Simplify the following $(1+i)^{-2}+(1-i)^{-2}$
Solution.
\begin{align}&(1+i)^{-2}+(1-i)^{-2}\\
=&\dfrac{1}{(1+i)^2}+\dfrac{1}{(1-i)^2}\\
=&\dfrac{1}{1+i^2+2i}+\dfrac{1}{1+i^2-2i}\\
=&\dfrac{1}{2i}+\dfrac{1}{-2i}\\
=&\dfrac{1}{2i}-\dfrac{1}{2i}\\
=&0\end{align}
Question 3(v)
Simplify: $(2+i)^2+\dfrac{7-4i}{2+i}$
Solution.
\begin{align}&(2+i)^2+\dfrac{7-4i}{2+i}\\
=&(4+i^2+4i)+\dfrac{7-4i}{2+i}\\
=&(3+4i)+\dfrac{7-4i}{2+i}\\
=&\dfrac{(3+4i)(2+i)+(7-4i)}{2+i}\\
=&\dfrac{(6+4i^2+8i+3i)+(7-4i)}{2+i}\\
=&\dfrac{2+11i+7-4i}{2+i}\\
=&\dfrac{9+7i}{2+i}\\
=&\dfrac{9+7i}{2+i}\times\dfrac{2-i}{2-i}\\
=&\dfrac{18-7i^2-9i+14i}{4-i^2}\\
=&\dfrac{25+5i}{5}\\
=&5+i.
\end{align}
Go to