Unit 05: Linear Inequalities and Linear Programming
Here is the list of important questions.
- Graph the solution region of $2x+y \geq 2$ — BSIC Gujranwala (2016)
- Graph the feasible region subject to the following constraint: — BSIC Gujranwala (2016)
$2x-3y \leq 6$
$2x+3y \leq 12$
$x \geq 0$, $y \geq 0$
- Graph the inequalities
$2x+y\geq 2$
$x+2y\leq10$
$x\geq0,y\geq0$ — BSIC Gujranwala (2015) - Indicate solution set of linear inequality $2x+3y\leq 12$ by shading. — BSIC Gujranwala (2015)
- Maximize $z=x+3y$
Subject to
$2x+5y\leq30$
$5x+4y\leq20$
$x\geq0$, $y\geq0$ — BSIC Gujranwala (2015) - Graph the feasible region of the system of linear inequalities
$x+2y\leq 14$
$3x+4y\leq 36$
$2x+y\leq 10$
$x\geq0, y\geq0$ and find the corner points. — FBSIC (2017) - Maximize $f(x)=2x+5y$ subject to the constraints
$-x\leq8$
$-y\leq4$
$x\geq0, y\geq 0$ .— FBSIC (2016) - Find the area bounded $\cos x$ function from $x=-\frac{\pi}{2}$ to $x=\frac{\pi}{2}$.— BSIC Rawalpindi (2017)
- Graph the solution set of the linear inequality $x+y \geq 5$ by shading.— BSIC Rawalpindi (2017)
- Minimize $z=3x+y$ subject to the constraints
$3x+5y\geq 15$
$x+6y\geq 9$
$x\geq0, y\geq0$ — BSIC Rawalpindi (2017) - Graph the feasible region of following inequality $2x-3y\leq6$ — BSIC Sargodha(2016)
- Graph the feasible region of following system of linear inequalities, also find corner points $2x-3y\leq6\\ 2x+3y\leq 12\\ x\geq0, y\geq 0$— BSIC Sargodha(2016)
- Define feasible region and feasible solution.— BSIC Sargodha(2017)
- Define optimal solution.— BSIC Sargodha(2017)
- Graph the feasible region of the following system of linear inequalities, also find corner points
$2x+3y \leq 18$
$2x+y\leq 10$
$x+4y\leq 12$
$x\geq0, y\geq 0$.— BSIC Sargodha(2017)