MCQs: Ch 01 Number Systems
High quality MCQs of Chapter 01 Number System of Text Book of Algebra and Trigonometry Class XI (Mathematics FSc Part 1 or HSSC-I), Punjab Text Book Board, Lahore. The answers are given at the end of the page.
MCQs
- If $*$ is a binary operation in a set $A$, then for all $a, b \in A$
- $a+b \in A$
- $a-b \in A$
- $a \times b \in A$
- $a * b \in A$
- If $z=(1,3)$ then $z^{-1}= $
- $(\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$
- $(-\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$
- $(\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$
- $(-\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})$
- $\displaystyle{\frac{3}{2+2i}}=$
- $1-i$
- $1+i$
- $-2i$
- $\displaystyle{\frac{3-3i}{4}}$
- $\overline{z_1+z_2}=$
- $\overline{z_1}+\overline{z_2}$
- $\overline{z_1}-\overline{z_2}$
- $\overline{z_1}+z_2$
- $z_1+\overline{z_2}$
- $|z_1+z_2|$
- $>|z_1|+|z_2|$
- $\leq|z_1|+|z_2|$
- $\leq z_1+z_2$
- $>z_1+z_2$
- If $z_1=2+i$, $z_2=1+3i$, then $z_1-z_2=$
- $1-7i$
- $-1+7i$
- $1-2i$
- $3+4i$
- If $z_1=2+i$, $z_2=1+3i$, then $-i lm (z_1-z_2)=$
- $2i$
- $-2i$
- $2$
- $3$
- Which of the following sets has closure property with respect to multiplication?
- $\{-1,1\}$
- $\{-1\}$
- $\{-1,0\}$
- $\{0,2\}$
- The multiplicative inverse of $2$ is
- $0$
- $1$
- $-2$
- $\displaystyle{\frac{1}{2}}$
- $\displaystyle{\frac{4}{2-2i}}=$
- $1-i$
- $1+i$
- $-2i$
- $i$
- The simplified form of $i^{101}$ is
- $-1$
- $1$
- $i$
- $-i$
- $\overline{\overline{z}}=$ is
- $\overline{z}$
- $-\overline{z}$
- $z$
- $-z$
- If $z_1=2+i$, $z_2=1+3i$, then $i \Re (z_1-z_2)=$
- $1$
- $i$
- $-2i$
- $2$
- $\sqrt{2}$ is ——- number.
- natural
- complex
- irrational
- $\displaystyle{\frac{p}{q}}$ form
- A rational number is a number which can be expressed in the form ——-
- $\displaystyle{\frac{p}{q}}$ where $p,q \in z \wedge q \neq 0$
- $\displaystyle{\frac{q}{p}}$ where $p,q \in z \wedge q \neq 0$
- $\displaystyle{\frac{p}{q}}$ where $p,q \in Z \wedge q = 0$
- $\displaystyle{\frac{q}{p}}$ where $p,q \in N \wedge q \neq 0$
- $\mathbb{R}=$
- $\mathbb{Q} \cup \mathbb{N}'$
- $\mathbb{Q}$
- $\mathbb{Q} \cup \mathbb{Q}'$
- $\mathbb{Q}$
- $\{1,2,3,...\}$
- set of irrational number
- set of real number
- set of rational number
- set of natural number
- The set of integers is —–
- $\{\pm1,\pm2,\pm3,...\}$
- $\{0,\pm1,\pm2,\pm3,...\}$
- $\{+1,+2,+3,...\}$
- $\{-1,+1,-2,+2\}$
- $0.333...=(\approx \displaystyle{\frac{1}{3}})$ is a ——– decimal.
- Terminating
- non-recurring
- recurring
- non-terminating and recurring
- $2.\overline{3}(=2.333...)$ is a —– number.
- irrational
- complex
- real
- rational
- For all $a, b, c \in \mathbb{R}$
(i) $a>b \wedge b>c \Rightarrow a>c$
(ii) $a<b \wedge b<c \Rightarrow a<c$
is called —– property.- Translative
- Transitive
- Trichotomy
- Trigonometric
- For all $ a, b, c \in \mathbb{R}$
(i) $a>b \Rightarrow a+c>b+c$
(ii) $a<b \Rightarrow a+c<b+c$
is called —– property.- Additional
- Advantage
- Advance
- Additive
- The number of the form $x+iy$, where $x,y \in \mathbb{R}$ is called ——- number.
- real
- conjugate
- complex
- imaginative
- Every real number is a complex number with $0$ as its ——— part.
- conjugate
- complex
- imaginary
- real
- Every complex number $(a,b)$ has a multiplicative identity equal to ———–
- $(0,1)$
- $(0,0)$
- $(1,0)$
- $(1,1)$
- Every complex number $(a,b)$ has a additive inverse equal to ———–
- $(-a,0)$
- $(-a,-b)$
- $(o,-b)$
- $(a,b)$
- Every complex number $(a,b)$ has a additive identity equal to ———–
- $0$
- $(0,1)$
- $(0,0)$
- $(1,0)$
- The conjugate of a complex number $(a,b)$ is equal to ———–
- $(-a,-b)$
- $(-a,+b)$
- $(a,b)$
- $(a,-b)$
- The modulus of a complex number $(a,b)$ is equal to ———–
- $\sqrt{a+b}$
- $\sqrt{a^2+b^2}$
- $\sqrt{a^3+b^3}$
- $\sqrt{a^2-b^2}$
- The figure representing one or more complex numbers on the complex plane is called ——– diagram.
- an artistic
- an organd
- an imaginative
- an argand
- The geometrical plane on which coordinate system has been specified is called the ——– plane.
- complex
- complex conjugate
- real
- realistic
- The Cartesian product $\mathbb{R} \times \mathbb{R}$ where $\mathbb{R}$ is the set of real numbers is called the ——– plane.
- ordered
- cartesian
- classical
- an argand
- If a point $A$ of the coordinate plane correspond to the ordered pair $(a,b)$ then $a,b$ are called the —— of $A$.
- ordinates
- abscissas
- coefficients
- coordinates
- Around $``5000 $ BC'' the Egyptians had a number system based on
- $5$
- $50$
- $10$
- $100$
- If $n$ is a prime number, then $\sqrt{n}$ is
- complex number
- rational number
- irrational number
- none of these
- A recurring decimal represents
- real number
- natural number
- rational number
- none of these
- $\pi$ is
- rational number
- an integer
- an irrational number
- natural number
- $0$ is
- positive number
- negative number
- natural number
- none of these
- A prime number can be a factor of a square only if it occurs in the square at least
- twice
- once
- thrice
- none of these
- $\sqrt{-1}$ is
- real number
- natural number
- rational number
- imaginary number
- The multiplicative inverse of a complex number $(a,b)$ is
- $(\displaystyle{\frac{a}{a^2+b^2}},\displaystyle{\frac{b}{a^2+b^2}})$
- $(\displaystyle{\frac{a}{a^2+b^2}},-\displaystyle{\frac{b}{a^2+b^2}})$
- $(-\displaystyle{\frac{a}{a^2+b^2}},\displaystyle{\frac{b}{a^2+b^2}})$
- $(-\displaystyle{\frac{a}{a^2+b^2}},-\displaystyle{\frac{b}{a^2+b^2}})$
- Every real number is a
- rational number
- natural number
- prime number
- complex number
- The Cartesian product of two non-empty sets $A$ and $B$ denoted by
- $AB$
- $BA$
- $A \times B$
- none of these
- Conjugate of complex number $x+iy$ is
- $-x+iy$
- $-x-iy$
- $x+y$
- $x-iy$
- Polar form of a complex number $x+iy$ is ……, where $r=|z|$ and $\theta = arg z$
- $\cos \theta+i \sin \theta$
- $r \cos \theta-ir \sin \theta$
- $r \cos \theta+ir \sin \theta$
- none of these
- If $z=x+iy$ then $|\overline{z}|$ is
- $\sqrt{x^2-y^2}$
- $\sqrt{x^2+y^2}$
- $\sqrt{2xy}$
- none of these
- If $-x-iy$ is a complex number then modulus of a complex number is
- $\sqrt{x^2-y^2}$
- $\sqrt{x^2+y^2}$
- $\sqrt{2xy}$
- none of these
- If $z_1$ and $z_2$ are two complex numbers then $\overline{z_1+z_2}$ is
- $z_1+z_2$
- $\overline{z_1}-\overline{z_2}$
- $\overline{z_1}+\overline{z_2}$
- none of these
- If $z_1$ and $z_2$ are two complex numbers then $\overline{z_1-z_2}$ is
- $z_1+z_2$
- $\overline{z_1}-\overline{z_2}$
- $\overline{z_1}+\overline{z_2}$
- none of these
- If $z_1$ and $z_2$ are two complex numbers then $\overline{z_1z_2}$ is
- $z_1z_2$
- $\displaystyle{\frac{z_1}{z_2}}$
- $\overline{z_1}\times \overline{z_2}$
- none of these
- If $z_1$ and $z_2$ are two complex numbers then $\overline{\displaystyle{\frac{z_1}{z_2}}}$ is
- $\displaystyle{\frac{z_1}{z_2}}$
- $z_1z_2$
- $\displaystyle{\overline{z_2}}$
- none of these
- If $z_1$ and $z_2$ are two complex numbers then $|z_1z_2|$ is
- $z_1z_2$
- $\displaystyle{\frac{|z_1|}{|z_2|}}$
- $|z_1||z_2|$
- none of these
- If $z$ and $\overline{z}$ is a conjugate then $|z \overline{z}|$ is equal to
- $|z||\overline{z}|$
- $|z|^2$
- $\displaystyle{\frac{|z|}{\overline{|z|}}}$
- none of these
- If $z-3-5i$ then $z^{-1}$ ———-
- $-\displaystyle{\frac{3}{34}}+\displaystyle{\frac{5}{34}i}$
- $\displaystyle{\frac{3}{34}}-\displaystyle{\frac{5}{34}i}$
- $\displaystyle{\frac{3}{34}}+\displaystyle{\frac{5}{34}i}$
- none of these
- If $(x+iy)^2=-----$
- $x^2+y^2+2xyi$
- $x^2-y^2-2xyi$
- $x^2-y^2+2xyi$
- none of these
- If $(x-iy)^2=-----$
- $x^2+y^2+2xyi$
- $x^2-y^2-2xyi$
- $x^2+y^2-2xyi$
- none of these
- If $z^2+\overline{z}^2$ is a
- Complex number
- Real number
- Both A and B
- None of these
- If $(z-\overline{z})^2$ is a
- Real number
- Complex number
- Both A and B
- None of these
- If $(z+\overline{z})^2$ is a
- Complex number
- Real number
- Both A and B
- None of these
- $i$ can be written in th form of an ordered pair as
- $(1,0)$
- $(1,1)$
- $(0,1)$
- None of these
- If $z=3-4i$ then $|\overline{z}|$ is
- $4$
- $3$
- $5$
- None of these
- For all $\ a, b, c \in R$, $a=b \wedge b=c\Rightarrow a=c$ is called
- Reflexive property
- Symmetric property
- Transitive property
- None of these
- For all $ a, b, c \in R$, $a+c=b+c \Rightarrow a=b$ is called
- Additive property
- Cancellation property w.r.t addition
- Cancellation property w.r.t multiplication
- None of these
- For all $a, b, c \in R$, $ac=bc \Rightarrow a=b,c \neq 0$ is called
- Cancellation property w.r.t addition
- Cancellation property w.r.t multiplication
- Symmetric property
- None of these
- $-(-a)$ should be read as
- Negative of negative
- Minus minus a
- Both A and B
- None of these
- If a point $A$ of the coordinate plane correspond to the order pair $(a,b)$ then $b$ is called
- Abscissa
- x-coordinate
- Ordinate
- None of these
Answers
1-b, 2-b, 3-d, 4-a, 5-b, 6-b, 7-c, 8-c, 9-a, 10-d, 11-a, 12-a, 13-d, 14-c, 15-a, 16-c, 17-d, 18-b, 19-d, 20-d, 21-b, 22-b, 23-c, 24-c, 25-c, 26-b, 27-c, 28-d, 29-b, 30-d, 31-c, 32-b, 33-d, 34-a, 35-c, 36-c, 37-c, 38-d, 39-a, 40-d, 41-b, 42-d, 43-c, 44-d, 45-c, 46-b, 47-b, 48-c, 49-b, 50-c, 51-c, 52-c, 53-b, 54-a, 55-b, 56-c, 57-c, 58-a, 59-b, 60-c, 61-c, 62-c, 63-b, 64-b, 65-a, 66-c