Question 9, Exercise 1.2
Solutions of Question 9 of Exercise 1.2 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 9(i)
If $z=3+2i,$ then verify that $-|z|\leq \operatorname{Re}\left( z \right)\leq |z|$
Solution
Given $z=3+2i$. Then $|z|=\sqrt{9+4}=\sqrt{13}$ and ${\rm Re}z=3=\sqrt{9}$.
As
\begin{align} &-\sqrt{13} \leq \sqrt{9} \leq \sqrt{13}\\
\implies &-|z|\leq \operatorname{Re}\left( z \right)\leq |z|\end{align}
Question 9(ii)
If $z=3+2i,$ then verify that $-|z|\leq \operatorname{Im}\left( z \right)\leq |z|$
Solution
Given $z=3+2i$. Then $|z|=\sqrt{9+4}=\sqrt{13}$ and ${\rm Im}z=2=\sqrt{4}$.
As
\begin{align} &-\sqrt{13} \leq \sqrt{4} \leq \sqrt{13}\\
\implies &-|z|\leq {\rm Im}(z) \leq |z| \end{align}
Go To