Search
You can find the results of your search below.
Fulltext results:
- Question 5, Exercise 2.6 @math-11-nbf:sol:unit02
- 3}=10$\\ ** Solution. ** The above system may be written as $A X=B$; where, \begin{align*} &A = \begin{bma... {3}=-1$\\ ** Solution. ** The above system maybe written as $AX = B $, where: \begin{align*} &A = \begin{b... _{3}=5$\\ ** Solution. ** The above system maybe written as $AX = B $, where: \begin{align*} &A = \begin{b
- Question 27 and 28, Exercise 4.7 @math-11-nbf:sol:unit04
- }{3}+\frac{9}{9}+\frac{11}{27}+\ldots$$ It can be written as: $$ 5\times 1+7\times\frac{1}{3}+9\times\frac... {3}{25} + \frac{4}{125} + \ldots \] It can be rewritten as:\\ \[ 1 \times 1 + 2 \times \frac{1}{5} + 3 \t
- Question 29 and 30, Exercise 4.7 @math-11-nbf:sol:unit04
- [ 1 + 4x + 7x^2 + 10x^3 + \ldots \] It can be rewritten as:\\ \[ 1 \times 1 + 4 \times x + 7 \times x^2 +... {100} + \frac{12}{1000} + \ldots \] It can be rewritten as:\\ \[ 3 \times 1 + 6 \times \frac{1}{10} + 9 \
- Question 21 and 22, Exercise 4.1 @math-11-nbf:sol:unit04
- sqrt{8}, \sqrt{10}, \ldots$$ The terms can be rewritten as: \begin{align*} &a_1=\sqrt{2 \cdot 1}, \\ &a_2
- Question 23 and 24, Exercise 4.7 @math-11-nbf:sol:unit04
- 3 \times 2^{2}+4 \times 2^{3}+\ldots$$ It can be written as $$ 1\times 1+2 \times 2+3 \times 2^{2}+4 \time