Search
You can find the results of your search below.
Fulltext results:
- Question 4(i-iv), Exercise 9.1
- stan. =====Question 4(i)===== Check whether the function is odd or even: $y=\sin x+x \cdot \cos x$ ** Sol... \cos x) \\ & = -f(x) \end{align*} Thus the given function is odd. =====Question 4(ii)===== Check whether the function is odd or even: $y=x^{3} \cdot \sin x \cdot \cos ... ot \cos x \\ & = f(x) \end{align*} Thus the given function is even. =====Question 4(iii)===== Check whether
- Question 4(v-viii), Exercise 9.1
- stan. =====Question 4(v)===== Check whether the function is odd or even: $y=\dfrac{\sin ^{2} x}{x+\tan x}$... x + \tan x}\\ &=-y(x)\end{align*} Thus, the given function is odd. =====Question 4(vi)===== Check whether the function is odd or even: $y=\dfrac{\tan x-\sin x}{\sin^3 x... sin^3 x}\\ & = -y(x) \end{align*} Thus, the given function is odd. =====Question 4(vii)===== Check whether
- Question 1,Review Exercise
- llapse> ii. The exact value of the trigonometric function $\tan (-15 \pi)=$\\ * (a) $ 0$\\ * (b) $-1$\\ *... ue">%%(b)%%: $\sin 4B$</collapse> x. Whether the function $f(x)=\frac{\sin^3 x}{x^2+\tan x}$ is:\\ * (a) ev... a)%%: $10 \pi$</collapse> xii. The trogonometric function $y=cosec x$ meet at $x=$\\ * (a) $30^{\circ}$ \\\... & $ \cos x$</collapse> xv. If $'f'$ is periodic function and its period is $\pi$, then $f(\theta)$ could b
- Question 5(vi-x), Exercise 9.1
- =Question 5(v)===== Draw the graph of each of the function: $y=2 \operatorname{Sin} 3 x$ ** Solution. ** ... Question 5(vi)===== Draw the graph of each of the function: $y=3 \operatorname{Cos} x$ ** Solution. ** ==... uestion 5(vii)===== Draw the graph of each of the function: $y=\operatorname{Cos}^{2} x$ ** Solution. ** ... estion 5(viii)===== Draw the graph of each of the function: $y=\operatorname{Sin}^{2} x$ ** Solution. **
- Question 1, Exercise 9.1
- e maximum and minimum values of the trigonometric function: $y=2-2 \operatorname{Cos} \theta$ ** Solution. ... e maximum and minimum values of the trigonometric function: $y=\dfrac{2}{3}-\dfrac{1}{2} \operatorname{Sin} ... e maximum and minimum values of the trigonometric function: $y=\dfrac{1}{5}-2 \operatorname{Sin}(3 \theta-7)... e maximum and minimum values of the trigonometric function: $\mathrm{y}=7+\frac{3}{5} \operatorname{Cos}(2 \
- Question 2, Exercise 9.1
- nd minimum values of the reciprocal trigonometric function: $y=\dfrac{1}{4+3 \operatorname{Sin} \theta}$ **... nd minimum values of the reciprocal trigonometric function: $y=\dfrac{1}{\frac{1}{2}-5 \operatorname{Cos} \t... nd minimum values of the reciprocal trigonometric function: $y=\dfrac{1}{\frac{1}{3}-4 \sin (2 \theta-5)}$ ... nd minimum values of the reciprocal trigonometric function: $y=\dfrac{1}{3+\frac{2}{5} \sin (5 \theta-7)}$
- Question 5(i-v), Exercise 9.1
- =Question 5(i)===== Draw the graph of each of the function: $y=2 \operatorname{Sin} x$ ** Solution. ** =... Question 5(ii)===== Draw the graph of each of the function: $y=2 \operatorname{Cos} 3 x$ ** Solution. ** ... uestion 5(iii)===== Draw the graph of each of the function: $y=2 \operatorname{Tan} 2 x$ ** Solution. ** ... Question 5(iv)===== Draw the graph of each of the function: $\mathrm{y}=\operatorname{Cos} \frac{\mathrm{x}}
- Question 10, Exercise 9.1
- e value of $k$,\\ c. The amplitude of the voltage function,\\ d. Model the voltage with an appropriate transformed Sine function. ** Solution. ** ====Go to ==== <text align