Unit 03: Integration

Here is the list of important questions.

  • Evaluate 1x(x+1)dx BSIC Gujranwala (2016)
  • Find 11+cosxdx BSIC Gujranwala (2016)
  • Evaluate 1xlnxdx BSIC Gujranwala (2016)
  • Find xlnxdx BSIC Gujranwala (2016)
  • Evaluate e2x(sinx+2cosx)dx BSIC Gujranwala (2016)
  • Compute 21(x2+1)dx BSIC Gujranwala (2016)
  • Calculate π40secx(secx+tanx)dx BSIC Gujranwala (2016)
  • Solve the differential equation sinycosecxdydx=1 BSIC Gujranwala (2016)
  • Evaluate 45x2dx BSIC Gujranwala (2016)
  • Evaluate 31(x3+3x2)dx BSIC Gujranwala (2016)
  • Evaluate (a2x)32dx BSIC Gujranwala (2015)
  • Evaluate 1+sinxdx BSIC Gujranwala (2015)
  • Evaluate 1a2X2dx BSIC Gujranwala (2015)
  • Evaluate emtan1x1+x2dx BSIC Gujranwala (2015)
  • Find xexdx BSIC Gujranwala (2015)
  • Find area between xaxis and the curve y=sin2x from x=0 to x=π3 BSIC Gujranwala (2015)
  • Solve dydx+2xy2y+1=x BSIC Gujranwala (2015)
  • Evaluate 21lnxdx BSIC Gujranwala (2015)
  • Solve dydx=y2+1ex BSIC Gujranwala (2015)
  • Evaluate π40secθsinθ+cosθdθ BSIC Gujranwala (2015)
  • Evaluate π40cos4tdt BSIC Gujranwala (2015), FBSIC(2017)
  • Show that a2x2dx=a22sin1xa+x2a2x2+c BSIC Gujranwala (2015)
  • Evaluate x36x2+25(x+1)2(x2)2dx FBSIC (2017)
  • Evaluate x(x+1)dx, (x>0) — FBSIC (2016)
  • Evaluate 021(2x1)2dx FBSIC (2016)
  • Solve the differential equation (x2yx2)dydx+y2+xy2=0. — FBSIC (2016)
  • Evaluate e2x+exexdx BSIC Rawalpindi(2017)
  • Evaluate cos3xsin2xdx BSIC Rawalpindi(2017)
  • Evaluate x+b(x2+2bx+c)12dx BSIC Rawalpindi(2017)
  • Evaluate ex(cosxsinx)dx BSIC Rawalpindi(2017)
  • Evaluate 321(x2+9)2dx BSIC Rawalpindi(2017)
  • Evaluate 52xx21dx BSIC Rawalpindi(2017)
  • What is the linear programming? — BSIC Rawalpindi(2017)
  • Solve the differential equation 1xdydx=1+y22 BSIC Rawalpindi(2017)
  • Using differentials to find the value of 417 BSIC Rawalpindi(2017)
  • Evaluate 2sinx+cosxdx BSIC Rawalpindi(2017)
  • Evaluate xx21dx BSIC Sargodha(2016)
  • Evaluate (2x+3)12dx BSIC Sargodha(2016)
  • Evaluate (lnx)1xdx BSIC Sargodha(2016)
  • Evaluate cotxxdx BSIC Sargodha(2016)
  • Evaluate x24+x2dx BSIC Sargodha(2016)
  • Evaluate tan1xdx BSIC Sargodha(2016)
  • Evaluate 21x(x2+1)dx BSIC Sargodha(2016)
  • Find the area between the xaxis and the curve y=x2+1, from x=1, to x=2 BSIC Sargodha(2016)
  • Solve the differential equation ydx+xdy=0 BSIC Sargodha(2016)
  • Show that y=cx1, is the solution of the differential equation xdydx=1+y BSIC Sargodha(2016)
  • Evaluate 7x1(x1)2(x+1)dx BSIC Sargodha(2016)
  • Evaluate π40sinx1(cos2x)dx BSIC Sargodha(2016)
  • Evaluate xx21dx BSIC Sargodha(2017)
  • Evaluate (θ1)2θdθ BSIC Sargodha(2017)
  • Evaluate a2at+bdt BSIC Sargodha(2017)
  • Evaluate tan2xdx BSIC Sargodha(2017)
  • Evaluate xlnxdx BSIC Sargodha(2017)
  • Evaluate 3x+1x2x6dx BSIC Sargodha(2017)
  • Evaluate π40secx(secx+tanx)dx BSIC Sargodha(2017)
  • Evaluate 263xdx BSIC Sargodha(2017)
  • Solve dydx=y2+1ex BSIC Sargodha(2017)
  • Evaluate π4011sinxdx BSIC Sargodha(2017)
  • Evaluate xsin1x1x2dx BSIC Sargodha(2017)
  • Solve the differential equation (yxdydx)=2(y2+dydx) BSIC Sargodha(2017)