Unit 03: Integration
Here is the list of important questions.
- Evaluate ∫1√x(√x+1)dx — BSIC Gujranwala (2016)
- Find ∫11+cosxdx — BSIC Gujranwala (2016)
- Evaluate ∫1xlnxdx — BSIC Gujranwala (2016)
- Find ∫xlnxdx — BSIC Gujranwala (2016)
- Evaluate ∫e2x(−sinx+2cosx)dx — BSIC Gujranwala (2016)
- Compute ∫21(x2+1)dx— BSIC Gujranwala (2016)
- Calculate ∫π40secx(secx+tanx)dx— BSIC Gujranwala (2016)
- Solve the differential equation sinycosecxdydx=1 — BSIC Gujranwala (2016)
- Evaluate ∫√4−5x2dx — BSIC Gujranwala (2016)
- Evaluate ∫3−1(x3+3x2)dx — BSIC Gujranwala (2016)
- Evaluate ∫(a−2x)32dx — BSIC Gujranwala (2015)
- Evaluate ∫√1+sinxdx — BSIC Gujranwala (2015)
- Evaluate ∫1a2−X2dx — BSIC Gujranwala (2015)
- Evaluate ∫emtan−1x1+x2dx — BSIC Gujranwala (2015)
- Find ∫xexdx — BSIC Gujranwala (2015)
- Find area between x−axis and the curve y=sin2x from x=0 to x=π3 — BSIC Gujranwala (2015)
- Solve dydx+2xy2y+1=x — BSIC Gujranwala (2015)
- Evaluate ∫2−1lnxdx — BSIC Gujranwala (2015)
- Solve dydx=y2+1e−x — BSIC Gujranwala (2015)
- Evaluate ∫π40secθsinθ+cosθdθ — BSIC Gujranwala (2015)
- Evaluate ∫π40cos4tdt — BSIC Gujranwala (2015), FBSIC(2017)
- Show that ∫√a2−x2dx=a22sin−1xa+x2√a2−x2+c — BSIC Gujranwala (2015)
- Evaluate ∫x3−6x2+25(x+1)2(x−2)2dx — FBSIC (2017)
- Evaluate ∫x(√x+1)dx, (x>0) — FBSIC (2016)
- Evaluate ∫0−21(2x−1)2dx— FBSIC (2016)
- Solve the differential equation (x2−yx2)dydx+y2+xy2=0. — FBSIC (2016)
- Evaluate ∫e2x+exexdx — BSIC Rawalpindi(2017)
- Evaluate ∫cos3xsin2xdx — BSIC Rawalpindi(2017)
- Evaluate ∫x+b(x2+2bx+c)12dx — BSIC Rawalpindi(2017)
- Evaluate ∫ex(cosx−sinx)dx — BSIC Rawalpindi(2017)
- Evaluate ∫321(x2+9)2dx — BSIC Rawalpindi(2017)
- Evaluate ∫√52x√x2−1dx — BSIC Rawalpindi(2017)
- What is the linear programming? — BSIC Rawalpindi(2017)
- Solve the differential equation 1xdydx=1+y22— BSIC Rawalpindi(2017)
- Using differentials to find the value of 4√17— BSIC Rawalpindi(2017)
- Evaluate ∫√2sinx+cosxdx — BSIC Rawalpindi(2017)
- Evaluate ∫x√x2−1dx — BSIC Sargodha(2016)
- Evaluate ∫(2x+3)12dx — BSIC Sargodha(2016)
- Evaluate ∫(lnx)1xdx — BSIC Sargodha(2016)
- Evaluate ∫cot√x√xdx — BSIC Sargodha(2016)
- Evaluate ∫x24+x2dx — BSIC Sargodha(2016)
- Evaluate ∫tan−1xdx — BSIC Sargodha(2016)
- Evaluate ∫21x(x2+1)dx— BSIC Sargodha(2016)
- Find the area between the x−axis and the curve y=x2+1, from x=1, to x=2— BSIC Sargodha(2016)
- Solve the differential equation ydx+xdy=0 — BSIC Sargodha(2016)
- Show that y=cx−1, is the solution of the differential equation xdydx=1+y— BSIC Sargodha(2016)
- Evaluate ∫7x−1(x−1)2(x+1)dx — BSIC Sargodha(2016)
- Evaluate ∫π40sinx−1(cos2x)dx — BSIC Sargodha(2016)
- Evaluate ∫x√x2−1dx — BSIC Sargodha(2017)
- Evaluate ∫(√θ−1)2√θdθ — BSIC Sargodha(2017)
- Evaluate ∫a2√at+bdt — BSIC Sargodha(2017)
- Evaluate ∫tan2xdx — BSIC Sargodha(2017)
- Evaluate ∫xlnxdx — BSIC Sargodha(2017)
- Evaluate ∫3x+1x2−x−6dx — BSIC Sargodha(2017)
- Evaluate ∫π40secx(secx+tanx)dx— BSIC Sargodha(2017)
- Evaluate ∫2−6√3−xdx— BSIC Sargodha(2017)
- Solve dydx=y2+1e−x— BSIC Sargodha(2017)
- Evaluate ∫π4011−sinxdx— BSIC Sargodha(2017)
- Evaluate ∫xsin−1x√1−x2dx — BSIC Sargodha(2017)
- Solve the differential equation (y−xdydx)=2(y2+dydx)— BSIC Sargodha(2017)