Unit 02: Differentiation
Here is the list of important questions.
- Differentiate (x2+1)2x2−1 w.r.t.x. — BSIC Gujranwala (2016)
- If x=at2, y=2at. Find dydx — BSIC Gujranwala (2016)
- Differentiate x2−1x2 w.r.t.x2. — BSIC Gujranwala (2016)
- Prove that ddx(tan−1x)=11+x2 — BSIC Gujranwala (2016)
- Prove that ddx(sinh−1x)=1√1+x2 — BSIC Gujranwala (2016)
- If y=x2ln(1x). Find dydx. — BSIC Gujranwala (2016)
- If x=sinθ, y=sinmθ. Find dydx. — BSIC Gujranwala (2016)
- Apply Maclaurin series to expand cosx=1−x22! — BSIC Gujranwala (2016)
- Differentiate cos2x w.r.t.sin2x. — BSIC Gujranwala (2016)
- Using differential find dydx, When x2+2y2=16 — BSIC Gujranwala (2016)
- Show that dydx=yx if yx=tan−1(xy) — BSIC Gujranwala (2016)
- Find dydx, if y2−xy−x2+4=0 — BSIC Gujranwala (2015)
- Prove that dydx(logax)=1xlna — BSIC Gujranwala (2015)
- Find dydx, if y=(lnx)lnx — BSIC Gujranwala (2015)
- Find y4 if y=cos3x — BSIC Gujranwala (2015)
- Expand ax in Meclaurin series. — BSIC Gujranwala (2015)
- Prove that derivative of a constant is zero. — BSIC Gujranwala (2015)
- Determine the interval in which f is increasing if f(x)=x3−6x2+9x. — BSIC Gujranwala (2015)
- Differentiate cos√x+√sinx with respect to x. — BSIC Gujranwala (2015)
- Use differentials to approximate the value of (31)15 — BSIC Gujranwala (2015)
- If y=x4+2x2+2, prove that dydx=40x√y−1— BSIC Gujranwala (2015)
- Find dydx, if x=a(1−t2)1+t2 and y=2bt1+t2. — BSIC Gujranwala (2015)
- Differentiate cos√x with respect to x by ab-initio method. — BSIC Gujranwala (2015)
- A box with a square base and open top is to have avolume of 4 cubic dm. Find the dimensions of the box which will require the least material? – BSIC Gujranwala (2015)
- Find the extreme values of the function f(x)=sinx+cosx occurring in the intial [0,2π] – BSIC Gujranwala (2015)
- Find dydx, if x2−4xy−5y2=0 — FBSIC (2016)
- If y=√tanx+√tanx+√x+..., prove that (2y−1)dydx=sec2x. — FBSIC (2016)
- Find dydx, if y=xesinx. — FBSIC (2016)
- Show that dydx=yx, if yx=tan−1yx. — FBSIC (2016)
- Differentiate (√x−1√x) w.r.t. x.— BSIC Rawalpandi (2017)
- Find dydx, if y=√x+√x.— BSIC Rawalpandi (2017)
- Differentiate x2sec4x w.r.t. x..— BSIC Rawalpandi (2017)
- Find dydx, if x=ysiny.— BSIC Rawalpandi (2017)
- Find f′(x) if f(x)=x2ln√x— BSIC Rawalpandi (2017)
- Find y2 if y−cos3x.— BSIC Rawalpandi (2017)
- Find dydx, if y=xesinx.— BSIC Rawalpandi (2017)
- Apply maclaurin`s series expansions to prove that ex=1+x+x22!+x33!+...— BSIC Rawalpandi (2017)
- Determine the intervals in which f(x)=cosx:x∈(−π2,π2) is increasing or decreasing function.— BSIC Rawalpandi (2017)
- If x=sinθ,γ=sin(mθ), then prove that (1−x2)y2−xy1+m2y+0— BSIC Rawalpandi (2017)
- Using differential, find dydx in the equation x2+2y2=16— BSIC Rawalpindi(2017)
- If f(x)=x2, then find f′(x) by defination. — BSIC Sargodha(2016)
- Differentiate a+xa−x w.r.t.x.— BSIC Sargodha(2016)
- If x=θ+1θ and y=θ+1 then find dydx. — BSIC Sargodha(2016)
- find dydx if y=xcosy — BSIC Sargodha(2016)
- If y=ex2+1 then find dydx. — BSIC Sargodha(2016)
- Find f′(x), if f(x)=ln(ex+e−x). — BSIC Sargodha(2016)
- If y=cos(ax+b) then find y1. — BSIC Sargodha(2016)
- By maclaurin`s series, prove that ex=1+x+x22!+x33!+.... — BSIC Sargodha(2016)
- Defined increasing and decreasing function. — BSIC Sargodha(2016)
- Prove that ydydx+x=0 if x=1−t21+t2, y==2t1+t2 . — BSIC Sargodha(2016)
- Define the derivative w.r.t.x. — BSIC Sargodha(2017)
- Differentiate w.r.t.x (x−5)(3−x) — BSIC Sargodha(2017)
- Differentiate w.r.t.x 1asin−1ax — BSIC Sargodha(2017)
- Find dydx, if y=x2ln√x — BSIC Sargodha(2017)
- Find dydx, if y=xesinx — BSIC Sargodha(2017)
- Find y2 if y=(2x+5)12 — BSIC Sargodha(2017)
- What is the decreasing function. — BSIC Sargodha(2017)
- Find dydx, if y=ln√x2−1x2+1 — BSIC Sargodha(2017)
- Differentiate cos√x w.r.t.x from first principle. — BSIC Sargodha(2017)