Unit 02: Differentiation

Here is the list of important questions.

  • Differentiate (x2+1)2x21 w.r.t.x. — BSIC Gujranwala (2016)
  • If x=at2, y=2at. Find dydx BSIC Gujranwala (2016)
  • Differentiate x21x2 w.r.t.x2. — BSIC Gujranwala (2016)
  • Prove that ddx(tan1x)=11+x2 BSIC Gujranwala (2016)
  • Prove that ddx(sinh1x)=11+x2 BSIC Gujranwala (2016)
  • If y=x2ln(1x). Find dydx. — BSIC Gujranwala (2016)
  • If x=sinθ, y=sinmθ. Find dydx. — BSIC Gujranwala (2016)
  • Apply Maclaurin series to expand cosx=1x22! BSIC Gujranwala (2016)
  • Differentiate cos2x w.r.t.sin2x. — BSIC Gujranwala (2016)
  • Using differential find dydx, When x2+2y2=16 BSIC Gujranwala (2016)
  • Show that dydx=yx if yx=tan1(xy) BSIC Gujranwala (2016)
  • Find dydx, if y2xyx2+4=0 BSIC Gujranwala (2015)
  • Prove that dydx(logax)=1xlna BSIC Gujranwala (2015)
  • Find dydx, if y=(lnx)lnx BSIC Gujranwala (2015)
  • Find y4 if y=cos3x BSIC Gujranwala (2015)
  • Expand ax in Meclaurin series. — BSIC Gujranwala (2015)
  • Prove that derivative of a constant is zero. — BSIC Gujranwala (2015)
  • Determine the interval in which f is increasing if f(x)=x36x2+9x. — BSIC Gujranwala (2015)
  • Differentiate cosx+sinx with respect to x. — BSIC Gujranwala (2015)
  • Use differentials to approximate the value of (31)15 BSIC Gujranwala (2015)
  • If y=x4+2x2+2, prove that dydx=40xy1 BSIC Gujranwala (2015)
  • Find dydx, if x=a(1t2)1+t2 and y=2bt1+t2. — BSIC Gujranwala (2015)
  • Differentiate cosx with respect to x by ab-initio method. — BSIC Gujranwala (2015)
  • A box with a square base and open top is to have avolume of 4 cubic dm. Find the dimensions of the box which will require the least material? – BSIC Gujranwala (2015)
  • Find the extreme values of the function f(x)=sinx+cosx occurring in the intial [0,2π] BSIC Gujranwala (2015)
  • Find dydx, if x24xy5y2=0 FBSIC (2016)
  • If y=tanx+tanx+x+..., prove that (2y1)dydx=sec2x. — FBSIC (2016)
  • Find dydx, if y=xesinx. — FBSIC (2016)
  • Show that dydx=yx, if yx=tan1yx. — FBSIC (2016)
  • Differentiate (x1x) w.r.t. x.— BSIC Rawalpandi (2017)
  • Find dydx, if y=x+x.— BSIC Rawalpandi (2017)
  • Differentiate x2sec4x w.r.t. x..— BSIC Rawalpandi (2017)
  • Find dydx, if x=ysiny.— BSIC Rawalpandi (2017)
  • Find f(x) if f(x)=x2lnx BSIC Rawalpandi (2017)
  • Find y2 if ycos3x.— BSIC Rawalpandi (2017)
  • Find dydx, if y=xesinx.— BSIC Rawalpandi (2017)
  • Apply maclaurin`s series expansions to prove that ex=1+x+x22!+x33!+... BSIC Rawalpandi (2017)
  • Determine the intervals in which f(x)=cosx:x(π2,π2) is increasing or decreasing function.— BSIC Rawalpandi (2017)
  • If x=sinθ,γ=sin(mθ), then prove that (1x2)y2xy1+m2y+0 BSIC Rawalpandi (2017)
  • Using differential, find dydx in the equation x2+2y2=16 BSIC Rawalpindi(2017)
  • If f(x)=x2, then find f(x) by defination. — BSIC Sargodha(2016)
  • Differentiate a+xax w.r.t.x.— BSIC Sargodha(2016)
  • If x=θ+1θ and y=θ+1 then find dydx. — BSIC Sargodha(2016)
  • find dydx if y=xcosy BSIC Sargodha(2016)
  • If y=ex2+1 then find dydx. — BSIC Sargodha(2016)
  • Find f(x), if f(x)=ln(ex+ex). — BSIC Sargodha(2016)
  • If y=cos(ax+b) then find y1. — BSIC Sargodha(2016)
  • By maclaurin`s series, prove that ex=1+x+x22!+x33!+.... — BSIC Sargodha(2016)
  • Defined increasing and decreasing function. — BSIC Sargodha(2016)
  • Prove that ydydx+x=0 if x=1t21+t2, y==2t1+t2 . — BSIC Sargodha(2016)
  • Define the derivative w.r.t.x. — BSIC Sargodha(2017)
  • Differentiate w.r.t.x (x5)(3x) BSIC Sargodha(2017)
  • Differentiate w.r.t.x 1asin1ax BSIC Sargodha(2017)
  • Find dydx, if y=x2lnx BSIC Sargodha(2017)
  • Find dydx, if y=xesinx BSIC Sargodha(2017)
  • Find y2 if y=(2x+5)12 BSIC Sargodha(2017)
  • What is the decreasing function. — BSIC Sargodha(2017)
  • Find dydx, if y=lnx21x2+1 BSIC Sargodha(2017)
  • Differentiate cosx w.r.t.x from first principle. — BSIC Sargodha(2017)