Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
msc:mcqs_short_questions:real_analysis [2021/10/26 08:11] Administratormsc:mcqs_short_questions:real_analysis [2023/04/03 04:03] – [Sequence of Numbers] Administrator
Line 21: Line 21:
   - Give an example to prove that bounded sequence may not convergent.   - Give an example to prove that bounded sequence may not convergent.
   - Prove that every convergent sequence is bounded.   - Prove that every convergent sequence is bounded.
-  -  
  
 ===== Multiple choice questions (MCQs) ===== ===== Multiple choice questions (MCQs) =====
-  - What is not true about number zero.+==== Real Number System==== 
 +<panel> 
 +1.  What is not true about number zero.
     * (A) Even     * (A) Even
     * (B) Positive     * (B) Positive
     * (C) Additive identity     * (C) Additive identity
     * (D) Additive inverse of zero \\ <btn type="link" collapse="a1">See Answer</btn><collapse id="a1" collapsed="true">(B): zero is neither positive not negative</collapse>     * (D) Additive inverse of zero \\ <btn type="link" collapse="a1">See Answer</btn><collapse id="a1" collapsed="true">(B): zero is neither positive not negative</collapse>
-  - Which one of them is not interval.+</panel> 
 +<panel> 
 + 2. Which one of them is not interval.
     * (A) $(1,2)$     * (A) $(1,2)$
     * (B) $\left(\frac{1}{2},\frac{1}{3} \right)$     * (B) $\left(\frac{1}{2},\frac{1}{3} \right)$
     * (C) $[3. \pi]$     * (C) $[3. \pi]$
-    * (D) $(2\pi,180)$ \\ <btn type="link" collapse="a2">See Answer</btn><collapse id="a2" collapsed="true">(B): In interval (a,b), a<b.</collapse> +    * (D) $(2\pi,180)$ \\ <btn type="link" collapse="a2">See Answer</btn><collapse id="a2" collapsed="true">(B): In interval $(a,b)$$a<b$ but $\frac{1}{2}>\frac{1}{3}$.</collapse> 
-  A number which is neither even nor odd is + </panel> 
 +<panel> 
 + 3. A number which is neither even nor odd is 
     * (A) 0     * (A) 0
     * (B) 2     * (B) 2
     * (C) $2n$ such that $n \in \mathbb{Z}$     * (C) $2n$ such that $n \in \mathbb{Z}$
-    * (D) $2\pi$ \\ <btn type="link" collapse="a3">See Answer</btn><collapse id="a3" collapsed="true">(D): $2\pi$ is not an integer.</collapse> +    * (D) $2\pi$ \\ <btn type="link" collapse="a3">See Answer</btn><collapse id="a3" collapsed="true">(D): Integers can only be even or odd but $2\pi$ is not an integer.</collapse> 
-  A number which is neither positive nor negative is + </panel> 
 +<panel> 
 + 4. A number which is neither positive nor negative is 
     * (A) 0     * (A) 0
     * (B) 1     * (B) 1
     * (C) $\pi$     * (C) $\pi$
-    * (D) None of these +    * (D) None of these \\ <btn type="link" collapse="a4">See Answer</btn><collapse id="a4" collapsed="true">(A): zero is number which is neither positive nor negative . </collapse> 
-  Concept of the divisibility only exists in set of ..............+ </panel><panel> 
 + 5. Concept of the divisibility only exists in set of ..............
     * (A) natural numbers     * (A) natural numbers
     * (B) integers     * (B) integers
     * (C) rational numbers     * (C) rational numbers
-    * (D) real numbers +    * (D) real numbers \\ <btn type="link" collapse="a5">See Answer</btn><collapse id="a5" collapsed="true">(B): In integers, we define divisibility rugosely </collapse> 
-  If a real number is not rational then it is ...............+ </panel><panel> 
 + 6. If a real number is not rational then it is ...............
     * (A) integer     * (A) integer
     * (B) algebraic number     * (B) algebraic number
     * (C) irrational number     * (C) irrational number
-    * (D) complex numbers +    * (D) complex numbers \\ <btn type="link" collapse="a6">See Answer</btn><collapse id="a6" collapsed="true">(C): Real numbers can be partitioned into rational and irrational. </collapse> 
-  Which of the following numbers is not irrational.+ </panel><panel> 
 + 7. Which of the following numbers is not irrational.
     * (A) $\pi$     * (A) $\pi$
     * (B) $\sqrt{2}$         * (B) $\sqrt{2}$    
     * (C) $\sqrt{3}$     * (C) $\sqrt{3}$
-    * (D) 7 +    * (D) 7 \\ <btn type="link" collapse="a7">See Answer</btn><collapse id="a7" collapsed="true">(D): Its easy to see </collapse> 
-  A set $A$ is said to be countable if there exists a function $f:A\to \mathbb{N}$ such that+ </panel><panel> 
 + 8. A set $A$ is said to be countable if there exists a function $f:A\to \mathbb{N}$ such that
     * (A) $f$ is bijective     * (A) $f$ is bijective
     * (B) $f$ is surjective     * (B) $f$ is surjective
     * (C) $f$ is identity map     * (C) $f$ is identity map
-    * (D) None of these +    * (D) None of these \\ <btn type="link" collapse="a8">See Answer</btn><collapse id="a8" collapsed="true">(A): By definition of countable set, it must be bijective. </collapse> 
-  Let $A=\{x| x\in \mathbb{N} \wedge x^2 \leq 7 \}$. Then supremum of $A$ is+ </panel><panel> 
 + 9. Let $A=\{x| x\in \mathbb{N} \wedge x^2 \leq 7 \} \subset  \mathbb{N}$. Then supremum of $A$ is
     * (A) 7     * (A) 7
     * (B) 3     * (B) 3
-    * (C) does not exist +    * (C) 2 
-    * (D) 0 +    * (D) does not exist \\ <btn type="link" collapse="a9">See Answer</btn><collapse id="a9" collapsed="true">(C): In tabular form $A=\{1, 2 \}$ and set of upper bouds is $\{2,3,4,... \}$. Now supremum is least upper bound $2$. </collapse> 
-  A convergent sequence has only ................ limit(s).+ </panel> 
 +==== Sequence of Numbers ==== 
 + <panel> 
 + 1. A convergent sequence has only ................ limit(s).
     * (A) one     * (A) one
     * (B) two     * (B) two
     * (C) three     * (C) three
-    * (D) None of these +    * (D) None of these \\ <btn type="link" collapse="a10">See Answer</btn><collapse id="a10" collapsed="true">(A): limit of the sequence, if it exist, is unique.</collapse> 
-  A sequence $\{s_n\}$ is said to be bounded if+ </panel><panel> 
 + 2. A sequence $\{s_n\}$ is said to be bounded if
     * (A) there exists  number $\lambda$ such that $|s_n|<\lambda$ for all $n\in\mathbb{Z}$.     * (A) there exists  number $\lambda$ such that $|s_n|<\lambda$ for all $n\in\mathbb{Z}$.
     * (B) there exists real number $p$ such that $|s_n|<p$ for all $n\in\mathbb{Z}$.     * (B) there exists real number $p$ such that $|s_n|<p$ for all $n\in\mathbb{Z}$.
     * (C) there exists positive real number $s$ such that $|s_n|<s$ for all $n\in\mathbb{Z^+}$.     * (C) there exists positive real number $s$ such that $|s_n|<s$ for all $n\in\mathbb{Z^+}$.
-    * (D) the term of the sequence lies in a vertical strip of finite width. +    * (D) the term of the sequence lies in a vertical strip of finite width. \\ <btn type="link" collapse="a11">See Answer</btn><collapse id="a11" collapsed="true">(C): It is a definition of bounded sequence.</collapse> 
-  If the sequence is convergent then+ </panel><panel> 
 +3. If the sequence is convergent then
     * (A) it has two limits.     * (A) it has two limits.
     * (B) it is bounded.     * (B) it is bounded.
     * (C) it is bounded above but may not be bounded below.     * (C) it is bounded above but may not be bounded below.
-    * (D) it is bounded below but may not be bounded above. +    * (D) it is bounded below but may not be bounded above. \\ <btn type="link" collapse="a12">See Answer</btn><collapse id="a12" collapsed="true">(B): If a sequence of real numbers is convergent, then it is bounded.</collapse> 
-  A sequence $\{(-1)^n\}$ is+ </panel><panel> 
 +4. A sequence $\{(-1)^n\}$ is
     * (A) convergent.     * (A) convergent.
     * (B) unbounded.     * (B) unbounded.
     * (C) divergent.     * (C) divergent.
-    * (D) bounded. +    * (D) bounded. \\ <btn type="link" collapse="a13">See Answer</btn><collapse id="a13" collapsed="true">(D): As $|(-1)^n| = 1 < 1.1$ for all $n \in \mathbb{N}, therefore it is bounded.$</collapse> 
-  - A sequence $\{\frac{1}{n} \}$ is+ </panel> 
 +<panel> 
 +5. A sequence $\left\{\dfrac{1}{n} \right\}$ is
     * (A) bounded.     * (A) bounded.
     * (B) unbounded.     * (B) unbounded.
     * (C) divergent.     * (C) divergent.
-    * (D) None of these. +    * (D) None of these. \\ <btn type="link" collapse="a14">See Answer</btn><collapse id="a14" collapsed="true">(A): As $\left\{\dfrac{1}{n} \right\}$ is convergent, it is bounded or it is easy to see $\left|\dfrac{1}{n} \right| \leq 1$ for all $n \in \mathbb{N}$.</collapse> 
-  A sequence $\{s_n\}$ is said be Cauchy if for $\epsilon>0$, there exists positive integer $n_0$ such that + </panel> 
 +<panel> 
 +6. A sequence $\{s_n\}$ is said be Cauchy if for $\epsilon>0$, there exists positive integer $n_0$ such that 
     * (A) $|s_n-s_m|<\epsilon$ for all $n,m>0$.     * (A) $|s_n-s_m|<\epsilon$ for all $n,m>0$.
     * (B) $|s_n-s_m|<n_0$ for all $n,m>\epsilon$.     * (B) $|s_n-s_m|<n_0$ for all $n,m>\epsilon$.
     * (C) $|s_n-s_m|<\epsilon$ for all $n,m>n_0$.     * (C) $|s_n-s_m|<\epsilon$ for all $n,m>n_0$.
-    * (D) $|s_n-s_m|<\epsilon$ for all $n,m<n_0$. +    * (D) $|s_n-s_m|<\epsilon$ for all $n,m<n_0$. \\ <btn type="link" collapse="a15">See Answer</btn><collapse id="a15" collapsed="true">(C): Definition of Cauchy sequence.</collapse> 
-  Every Cauchy sequence has a ...............+ </panel><panel> 
 +7. Every Cauchy sequence has a ...............
     * (A) convergent subsequence.     * (A) convergent subsequence.
     * (B) increasing subsequence.     * (B) increasing subsequence.
     * (C) decreasing subsequence.     * (C) decreasing subsequence.
-    * (D) positive subsequence. +    * (D) positive subsequence. \\ <btn type="link" collapse="a16">See Answer</btn><collapse id="a16" collapsed="true">(A): Every Cauchy sequence has a convergent subsequence.</collapse> 
-  A sequence of real number is Cauchy iff+ </panel><panel> 
 +8. A sequence of real number is Cauchy iff
     * (A) it is bounded     * (A) it is bounded
     * (B) it is convergent     * (B) it is convergent
     * (C) it is positive term sequence     * (C) it is positive term sequence
-    * (D) it is convergent but not bounded. +    * (D) it is convergent but not bounded. \\ <btn type="link" collapse="a17">See Answer</btn><collapse id="a17" collapsed="true">(B): Cauchy criterion for convergence of sequences.</collapse> 
-  Let $\{s_n\}$ be a convergent sequence. If $\lim_{n\to\infty}s_n=s$, then+ </panel><panel> 
 +9. Let $\{s_n\}$ be a convergent sequence. If $\lim_{n\to\infty}s_n=s$, then
     * (A) $\lim_{n\to\infty}s_{n+1}=s+1$     * (A) $\lim_{n\to\infty}s_{n+1}=s+1$
     * (B) $\lim_{n\to\infty}s_{n+1}=s$     * (B) $\lim_{n\to\infty}s_{n+1}=s$
     * (C) $\lim_{n\to\infty}s_{n+1}=s+s_1$     * (C) $\lim_{n\to\infty}s_{n+1}=s+s_1$
-    * (D) $\lim_{n\to\infty}s_{n+1}=s^2$. +    * (D) $\lim_{n\to\infty}s_{n+1}=s^2$. \\ <btn type="link" collapse="a18">See Answer</btn><collapse id="a18" collapsed="true">(B): If $n\to\infty$, then $n+1\to\infty$ too.</collapse> 
-  Every convergent sequence has ................. one limit.+ </panel><panel> 
 +10. Every convergent sequence has ................. one limit.
     * (A) at least     * (A) at least
     * (B) at most     * (B) at most
     * (C) exactly     * (C) exactly
-    * (D) none of these +    * (D) none of these \\ <btn type="link" collapse="210">See Answer</btn><collapse id="210" collapsed="true">(C): Every convergent sequence has unique limit.</collapse> 
-  If the sequence is decreasing, then it  ................+ </panel><panel> 
 +11. If the sequence is decreasing, then it  ................
     * (A) converges to its infimum.     * (A) converges to its infimum.
     * (B) diverges.     * (B) diverges.
     * (C) may converges to its infimum     * (C) may converges to its infimum
-    * (D) is bounded. +    * (D) is bounded. \\ <btn type="link" collapse="211">See Answer</btn><collapse id="211" collapsed="true">(C): If the sequence is bounded and decreasing, then it convergent.</collapse> 
-  If the sequence is increasing, then it  ................+ </panel><panel> 
 +12. If the sequence is increasing, then it  ................
     * (A) converges to its supremum.     * (A) converges to its supremum.
     * (B) diverges.     * (B) diverges.
     * (C) may converges to its supremum.     * (C) may converges to its supremum.
-    * (D) is bounded. +    * (D) is bounded. \\ <btn type="link" collapse="212">See Answer</btn><collapse id="212" collapsed="true">(C): If the sequence is bounded and decreasing, then it convergent.</collapse> 
-  If a sequence converges to $s$, then .............. of its sub-sequences converges to $s$.+ </panel><panel> 
 +13. If a sequence converges to $s$, then .............. of its sub-sequences converges to $s$.
     * (A) each     * (A) each
     * (B) one     * (B) one
     * (C) few     * (C) few
-    * (D) none +    * (D) none \\ <btn type="link" collapse="213">See Answer</btn><collapse id="213" collapsed="true">(A): Every subsequence of convergent sequence converges to the same limit.</collapse> 
-  If two sub-sequences of a sequence converge to two different limits, then a sequence ...............+ </panel><panel> 
 +14. If two sub-sequences of a sequence converge to two different limits, then a sequence ...............
     * (A) may convergent.     * (A) may convergent.
     * (B) may divergent.     * (B) may divergent.
     * (C) is convergent.     * (C) is convergent.
-    * (D) is divergent. +    * (D) is divergent. \\ <btn type="link" collapse="214">See Answer</btn><collapse id="214" collapsed="true">(D): Every subsequence of convergent sequence converges to the same limit.</collapse> 
-  A series $\sum a_n$ is convergent if and only if ..................... is convergent  + </panel> 
-    * (A) $\{\sum_{k=1}^{\infty}a_k \}$ +==== Series of Numbers ==== 
-    * (B) $\{\sum_{k=1}^{n}a_k \}$ +<panel> 
-    * (C) $\{\sum_{n=1}^{\infty}a_k \}$ +1.  A series $\sum_{n=1}^\infty a_n$ is said to be convergent if the sequence $\{ s_n \}$, where .................. 
-    * (D) $\{ a_n \}$ +    * (A) $s_n=\sum_{n=1}^\infty a_n$ is convergent. 
-  Let $\sum a_n$ be a series of non-negative terms. Then it is convergent if ........... +    * (B) $s_n=\sum_{k=1}^n a_k$ is convergent. 
-    * (A) it is bounded. +    * (C) $s_n=\sum_{k=1}^n a_nis convergent. 
-    * (B) it may bounded. +    * (D) $s_n=\sum_{k=1}^n a_k$ is divergent. \\ <btn type="link" collapse="301">See Answer</btn><collapse id="301" collapsed="true">(B): Series is convergent if its sequence of partial sume is convergent.</collapse> 
-    * (C) it is unbounded. +</panel><panel> 
-    * (D) it may unbounded. +2.  If  $\sum_{n=1}^\infty a_n$  converges then  ........................... 
-  - If $\lim_{n\to\infty} a_n=0$, then $\sum a_n$ ................+    *  (A) $\lim_{n\to \inftya_n=0$. 
 +    * (B) $\lim_{n\to \inftya_n=1$. 
 +    * (C) $\lim_{n\to \infty} a_n \neq 0$ 
 +    * (D) $\lim_{n\to \infty} a_n$ exists. \\ <btn type="link" collapse="302">See Answer</btn><collapse id="302" collapsed="true">(A)</collapse> 
 +</panel> 
 +<panel> 
 +3.  If  $\lim_{n\to \infty} a_n \neq 0$, then $\sum_{n=1}^\infty a_n$    ........................... 
 +    *  (A) is convergent. 
 +    * (B) may convergent. 
 +    * (C) is divergent 
 +    * (D) is bounded. \\ <btn type="link" collapse="303">See Answer</btn><collapse id="303" collapsed="true">(C): It is called divergent test</collapse> 
 +</panel> 
 +<panel> 
 +4.  A series $\sum_{n=1}^\infty \left( 1+\frac{1}{n} \right)is ....................  
 +    *  (A) convergent. 
 +    * (B) divergent. 
 +    * (C) constant. 
 +    * (D) none of these \\ <btn type="link" collapse="304">See Answer</btn><collapse id="304" collapsed="true">(B): As $\lim_{n\to \infty}\,\left( 1+\frac{1}{n} \right)=1\ne 0$, therefore by divergent test, the given series is divergent.</collapse> 
 +</panel><panel> 
 +5. Let $\sum a_n$ be a series of non-negative terms. Then it is convergent if its sequence of partial sum ............... 
 +    * (A) is bounded. 
 +    * (B) may bounded. 
 +    * (C) is unbounded. 
 +    * (D) is divergent\\ <btn type="link" collapse="305">See Answer</btn><collapse id="305" collapsed="true">(A): If  $\sum a_n$ is a non-negative terms series, then its sequence of partial sum is increasing. A monotone sequence of partial sume is convergent, if it is bounded.</collapse> 
 + </panel><panel> 
 + 6. If $\lim_{n\to\infty} a_n=0$, then $\sum a_n$ ................
     * (A) is convergent.     * (A) is convergent.
     * (B) is divergent.     * (B) is divergent.
     * (C) may or may not convergent     * (C) may or may not convergent
-    * (D) none of these +    * (D) none of these \\ <btn type="link" collapse="306">See Answer</btn><collapse id="306" collapsed="true">(C): If  $\sum a_n$ is convergent, then $\lim_{n\to\infty} a_n=0$ but converse may not true. e.g., $\sum \frac{1}{n}$ is divergent. </collapse> 
-  A series $\sum \frac{1}{n^p}$ is convergent if + </panel><panel> 
-    * (A) $p\geq 1$. +7. A series $\sum \frac{1}{n^p}$ is convergent if 
-    * (B) $p\leq 1$. +    * (A) $p\leq 1$. 
-    * (C) $p>1$. +    * (B) $p\geq 1$. 
-    * (D) $p<1$. +    * (C) $p<1$. 
-  - If a sequence $\{a_n\}$ is convergent then the series $\sum a_n$ ................+    * (D) $p>1$. \\ <btn type="link" collapse="307">See Answer</btn><collapse id="307" collapsed="true">(D): The p-series test, it can be proved easily by Cauchy condensation test.  </collapse> 
 + </panel><panel> 
 + 8- If a sequence $\{a_n\}$ is convergent then the series $\sum a_n$ ................
     * (A) is convergent.     * (A) is convergent.
     * (B) is divergent.     * (B) is divergent.
     * (C) may or may not convergent     * (C) may or may not convergent
-    * (D) none of these +    * (D) none of these \\ <btn type="link" collapse="308">See Answer</btn><collapse id="308" collapsed="true">(C): The p-series test, it can be proved easily by Cauchy condensation test. </collapse> 
-  - An alternating series $\sum (-1)^n a_n$, where $a_n\geq 0$ for all $n$, is convergent if+ </panel><panel> 
 + 9. An alternating series $\sum (-1)^n a_n$, where $a_n\geq 0$ for all $n$, is convergent if
     * (A) $\{a_n\}$ is convergent.     * (A) $\{a_n\}$ is convergent.
     * (B) $\{a_n\}$ is decreasing.     * (B) $\{a_n\}$ is decreasing.
     * (C) $\{a_n\}$ is bounded.     * (C) $\{a_n\}$ is bounded.
-    * (D) $\{a_n\}$ is decreasing and $\lim a_n=0$. +    * (D) $\{a_n\}$ is decreasing and $\lim a_n=0$. \\ <btn type="link" collapse="309">See Answer</btn><collapse id="309" collapsed="true">(B): Its called alternating series test. </collapse> 
-  An series $\sum a_n$ is said to be absolutely convergent if+ </panel><panel> 
 +10. An series $\sum a_n$ is said to be absolutely convergent if
     * (A) $\left| \sum a_n \right|$ is convergent.     * (A) $\left| \sum a_n \right|$ is convergent.
     * (B) $\left| \sum a_n \right|$ is convergent but $\sum a_n$ is divergent.     * (B) $\left| \sum a_n \right|$ is convergent but $\sum a_n$ is divergent.
     * (C) $\sum |a_n|$ is convergent.     * (C) $\sum |a_n|$ is convergent.
-    * (D) $\sum |a_n|$ is divergent but $\sum a_n$ is convergent. +    * (D) $\sum |a_n|$ is divergent but $\sum a_n$ is convergent. \\ <btn type="link" collapse="310">See Answer</btn><collapse id="310" collapsed="true">(C): It is definition of absolutely convergent. </collapse> 
-  A number $L$ is called limit of the function $f$ when $x$ approaches to $c$ if for all $\varepsilon>0$, there exist $\delta>0$ such that ......... whenever $0<|x-c|<\delta$. + </panel> 
-    $|f(x)-L| > \varepsilon$ +==== Limit of functions ==== 
-    $|f(x)-L| < \varepsilon$ +<panel> 
-    $|f(x)-L| \leq \varepsilon$ +1. A number $L$ is called limit of the function $f$ when $x$ approaches to $c$ if for all $\varepsilon>0$, there exist $\delta>0$ such that ......... whenever $0<|x-c|<\delta$. 
-    $|f(x)-L| \geq \varepsilon$  +    * (A) $|f(x)-L| > \varepsilon$ 
-  If $\lim_{x \to c}f(x)=L$, then ............ sequence $\{x_n\}$ such that $x_n \to c$, when $n\to \infty$, one has $\lim_{n \to \infty}f(x_n)=L$. +    * (B) $|f(x)-L| < \varepsilon$ 
-    for some +    * (C) $|f(x)-L| \leq \varepsilon$ 
-    for every +    * (D) $|f(x)-L| \geq \varepsilon$  \\ <btn type="link" collapse="401">See Answer</btn><collapse id="401" collapsed="true">(B): It is a definition of limit of functions. </collapse> 
-    for few + </panel><panel> 
-    none +2. If $\lim_{x \to c}f(x)=L$, then .............. sequence $\{x_n\}$ such that $x_n \to c$, when $n\to \infty$, one has $\lim_{n \to \infty}f(x_n)=L$. 
-  Let $f(x)=\frac{x^2-5x+6}{x-3}$, then $\lim_{x\to 3}f(x)=$........... +    * (A) for some 
-    $-1$ +    * (B) for every 
-    $0$ +    * (C) for few 
-    $1$ +    * (D) none of these \\ <btn type="link" collapse="402">See Answer</btn><collapse id="402" collapsed="true">(B) </collapse> 
-    doesn't exist. + </panel><panel> 
-  - Which one is not partition of interval $[1,5]$. +3. Let $f(x)=\frac{x^2-5x+6}{x-3}$, then $\lim_{x\to 3}f(x)=$........... 
-    $\{1,2,3,5 \}$ +    * (A) $-1$ 
-    $\{1,3,3.5,5 \}$ +    * (B) $0$ 
-    $\{1,1.1,5 \}$ +    * (C) $1$ 
-    $\{1,2,3,4,5 \}$  +    * (D) doesn't exist. \\ <btn type="link" collapse="403">See Answer</btn><collapse id="403" collapsed="true">(C): $\lim_{x\to 3}f(x)=\frac{x^2-5x+6}{x-3}=\lim_{x\to 3}\frac{(x-2)(x-3)}{x-3}$ $=\lim_{x\to 3}(x-2) = 1$. </collapse> 
-  What is norm of partition $\{0,3,3.1,3.2,7,10 \}$ of interval $[0,10]$. + </panel> 
-    $10$ +==== Riemann Integrals ==== 
-    $3$ +<panel> 
-    $3.8$ +1. Which one is not partition of interval $[1,5]$. 
-    $0.1$+   * (A) $\{1,2,3,5 \}$ 
 +   * (B) $\{1,3,3.5,5 \}$ 
 +   * (C)$\{1,1.1,5 \}$ 
 +   * (D) $\{1,2.1,3,4,5.5 \}$ \\ <btn type="link" collapse="601">See Answer</btn><collapse id="601" collapsed="true">(D): All points must be between $1$ and $5$.</collapse> 
 + </panel><panel> 
 +2. What is norm of partition $\{0,3,3.1,3.2,7,10 \}$ of interval $[0,10]$. 
 +   * (A) $10$ 
 +   * (B) $3$ 
 +   * (C) $3.8$ 
 +   * (D) $0.1$ \\ <btn type="link" collapse="602">See Answer</btn><collapse id="602" collapsed="true">(C): Maximum distance between any two points of the partition is norm, which is $7-3.2=3.8$.</collapse> 
 +</panel>