Search

You can find the results of your search below.

Question 7, Exercise 1.2
6 Hits, Last modified:
eal and imaginary parts $\dfrac{2+3i}{5-2i}$. ====Solution==== \begin{align}&\dfrac{2+3i}{5-2i} \\ =&\dfrac... $\dfrac{{{\left( 1+2i \right)}^{2}}}{1-3i}$. ====Solution==== \begin{align}&\dfrac{(1+2i)^2}{1-3i}\\ =&\df... ts $\dfrac{1-i}{{{\left( 1+i \right)}^{2}}}$. ====Solution==== \begin{align}&\dfrac{1-i}{{{\left( 1+i \righ... ginary parts ${{\left( 2a-bi \right)}^{-2}}$. ====Solution==== \begin{align}&{{\left( 2a-bi \right)}^{-2}}\
Question 8, Exercise 1.2
5 Hits, Last modified:
rline{z}=2\operatorname{Re}\left( z \right)$. ====Solution==== Assume $z=a+ib$, then $\overline{z}=a-ib$. \... line{z}=2i\operatorname{Im}\left( z \right)$. ====Solution==== Assume that $z=a+ib$, then $\overline{z}=a-i... ratorname{Im}\left( z \right) \right]}^{2}}$. ====Solution==== Suppose $z=a+ib$, then $\overline{z}=a-ib$. ... that $z=\overline{z}\Rightarrow z$ is real. ====Solution==== Suppose $z=a+bi$ ... (1) Then $\overline{z
Question 2 & 3, Review Exercise 1
5 Hits, Last modified:
i}^{n+2}}+{{i}^{n+3}}=0$, $\forall n\in N$ \\ ====Solution==== \begin{align}{{i}^{n}}+{{i}^{n+1}}+{{i}^{n+2... left( 5+7i \right)$ in the form of $x+iy$.\\ ====Solution==== $\left( 1+3i \right)+\left( 5+7i \right)=1+5... left( 5+7i \right)$ in the form of $x+iy$.\\ ====Solution==== \begin{align}\left( 1+3i \right)-\left( 5+7i... left( 5+7i \right)$ in the form of $x+iy$.\\ ====Solution==== \begin{align}(1+3i)(5+7i)&=5+7i+15i+21{{i}^{
Question 1, Exercise 1.1
4 Hits, Last modified:
i)===== Simplify ${{i}^{9}}+{{i}^{19}}$. GOOD ====Solution==== \begin{align}{{i}^{9}}+{{i}^{19}}&=i\cdot{{i}... = Simplify ${{\left( -i \right)}^{23}}$. GOOD ====Solution==== \begin{align}{{\left( -i \right)}^{23}}&={{\l... ${{\left( -1 \right)}^{\frac{-23}{2}}}$. GOOD ====Solution==== \begin{align}{{\left( -1 \right)}^{\frac{-23}... ${{\left( -1 \right)}^{\frac{15}{2}}}$. GOOD ====Solution==== \begin{align}{{\left( -1 \right)}^{\frac{15}{
Question 2 & 3, Exercise 1.1
4 Hits, Last modified:
+{{i}^{112}}+{{i}^{122}}+{{i}^{153}}=0$. GOOD ====Solution==== \begin{align}L.H.S.&={{i}^{107}}+{{i}^{112}}+... $3\left( 1+2i \right),-2\left( 1-3i \right)$. ====Solution==== \begin{align}& 3\left( 1+2i \right)+-2\left( ... 2}-\dfrac{2}{3}i,\dfrac{1}{4}-\dfrac{1}{3}i$. ====Solution==== \begin{align}&\left( \dfrac{1}{2}-\dfrac{2}{3... sqrt{2},1 \right),\left( 1,\sqrt{2} \right)$. ====Solution==== \begin{align}&\left( \sqrt{2},1 \right)+\left
Question 6, Exercise 1.1
4 Hits, Last modified:
i}$ and write the answer in the form $a+ib$. ====Solution==== \begin{align}\dfrac{4+i}{3+5i}&=\dfrac{4+i}{3... i}$ and write the answer in the form $a+ib$. ====Solution==== \begin{align}\dfrac{1}{-8+i}&=\dfrac{1}{-8+i}... i}$ and write the answer in the form $a+ib$. ====Solution==== \begin{align}\dfrac{1}{7-3i}&=\dfrac{1}{7-3i}... i}$ and write the answer in the form $a+ib$. ====Solution==== \begin{align}\dfrac{6+i}{i}&=\dfrac{6+i}{i}\t
Question 2, Exercise 1.3
4 Hits, Last modified:
actors. $$P\left( z \right)={{z}^{3}}+6z+20$$ ====Solution==== Given: $$p\left( z \right)={{z}^{3}}+6z+20$... $P(z)$ into linear factors. $$P(z)=3z^2+7.$$ ====Solution==== \begin{align} P(z)&=3z^2+7\\ &=\left(\sqrt{3}... r factors. $$P\left( z \right)={{z}^{2}}+4$$ ====Solution==== \begin{align}P(z)&={{z}^{2}}+4\\ &={{\left( ... r factors. $$P(z)={{z}^{3}}-2{{z}^{2}}+z-2.$$ ====Solution==== Given: $$P\left( z \right)={{z}^{3}}-2{{z}^{
Question 3 & 4, Exercise 1.3
4 Hits, Last modified:
satisfied the equation ${{z}^{2}}+2z+2=0$\\ ====Solution==== Given: $$z^2+2z_1+2=0\quad \ldots (i)$$ Put ... ====Question 4===== Determine weather $1+2i$ is a solution of ${{z}^{2}}-2z+5=0$\\ ====Solution==== Given: $$z^2-2z+5=0 \ldots (i)$$ Put $z=1+2i$ in equaiton (i), we... \ &=1-4+5\\ &=0\end{align} This implies $1+2i$ is solution of the given equation. ====Go To==== <text align=
Question 5, Exercise 1.3
4 Hits, Last modified:
solutions of the equation ${{z}^{2}}+z+3=0$. ====Solution==== Given: $${{z}^{2}}+z+3=0.$$ According to the... solutions of the equation ${{z}^{2}}-1=z$.\\ ====Solution==== Given: $${{z}^{2}}-1=z$$ $$\implies {{z}^{2}... lutions of the equation ${{z}^{2}}-2z+i=0$\\ ====Solution==== Given: $${{z}^{2}}-2z+i=0$$ According to the... e solutions of the equation ${{z}^{2}}+4=0$\\ ====Solution==== Given: $${{z}^{2}}+4=0$$ \begin{align} \impl
Question 6, Exercise 1.3
4 Hits, Last modified:
ns of the equation ${{z}^{4}}+{{z}^{2}}+1=0$. ====Solution==== $$z^4+z^2+1=0$$ $$z^4+2z^2+1-z^2=0$$ $$( z^... the solutions of the equation ${{z}^{3}}=-8$. ====Solution==== Given: $$z^3=-8.$$ This gives \begin{align} ... e equation ${{\left( z-1 \right)}^{3}}=-1$.\\ ====Solution==== Given: $$(z-1)^3=-1.$$ Since we have $$(a-b... e solutions of the equation ${{z}^{3}}=1$. \\ ====Solution==== Given $$z^3=1.$$ Thus, we have \begin{align}
Question 4, Exercise 1.1
3 Hits, Last modified:
irst $\left( a,0 \right)\left( 2,-b \right)$. ====Solution==== \begin{align}&\left( a,0 \right)-\left( 2,-b ... {1}{2} \right)\left( 3,\dfrac{1}{2} \right)$. ====Solution==== \begin{align}&\left( -3,\dfrac{1}{2} \right)-... t $3\sqrt{3}-5\sqrt{7}i,\sqrt{3}+2\sqrt{7}i$. ====Solution==== \begin{align}&\left(3\sqrt{3}-5\sqrt{7}i \rig
Question 5, Exercise 1.1
3 Hits, Last modified:
== Multiply the complex number $8i+11,-7+5i$. ====Solution==== \begin{align}&(8i+11)\times (-7+5i)\\ &=\left... the complex number $3i,2\left( 1-i \right)$. ====Solution==== \begin{align}&3i\times 2\left( 1-i \right)\\ ... ber $\sqrt{2}+\sqrt{3i},2\sqrt{2}-\sqrt{3i}$. ====Solution==== \begin{align}&\left( \sqrt{2}+\sqrt{3}i \righ
Question 7, Exercise 1.1
3 Hits, Last modified:
{2}}=2+3i$, evaluate $|{{z}_{1}}+{{z}_{2}}|$. ====Solution==== We know that $z_1=1+2i$ and $z_2=2+3i$, then ... _{2}}=2+3i$, evaluate $|{{z}_{1}}{{z}_{2}}|$. ====Solution==== We know that $z_1=1+2i$ and $z_2=2+3i$, then ... i$, evaluate $\left|\dfrac{z_1}{z_2}\right|$. ====Solution==== We know that $z_1=1+2i$ and $z_2=2+3i$, then
Question 8, Exercise 1.1
3 Hits, Last modified:
{4-i}{3+2i}$ in the standard form of $a+ib.$ ====Solution==== \begin{align}&\dfrac{1-2i}{2+i}+\dfrac{4-i}{3... \sqrt{-16}}$ in the standard form of $a+ib.$ ====Solution==== \begin{align}\dfrac{2+\sqrt{-9}}{-5-\sqrt{-16... {2}}}{4+3i}$ in the standard form of $a+ib.$ ====Solution==== \begin{align}\dfrac{\left( 1+i \right)\left(
Question 3 & 4, Exercise 1.2
3 Hits, Last modified:
property w.r.t. addition and multiplication. ====Solution==== ${{z}_{1}}=\sqrt{3}+\sqrt{2}i$ ${{z}_{2}}=\s... icative inverse of the complex number $5+2i$. ====Solution==== Given $z=5+2i$. Here $a=5$ and $b=2$. Addit... of the complex number $\left( 7,-9 \right)$. ====Solution==== Given $z=(7,-9)=7-9i$. Here $a=7$ and $b=-9$.
Question 5, Exercise 1.2
3 Hits, Last modified:
Question 1, Exercise 1.3
3 Hits, Last modified:
Question 6, 7 & 8, Review Exercise 1
3 Hits, Last modified:
Question 9 & 10, Exercise 1.1
2 Hits, Last modified:
Question 11, Exercise 1.1
2 Hits, Last modified:
Question 6, Exercise 1.2
2 Hits, Last modified:
Question 9, Exercise 1.2
2 Hits, Last modified:
Question 4 & 5, Review Exercise 1
2 Hits, Last modified:
Question 1, Exercise 1.2
1 Hits, Last modified:
Question 2, Exercise 1.2
1 Hits, Last modified: