Differences

This shows you the differences between two versions of the page.

Link to this comparison view

msc:notes:metric_spaces_notes [2021/02/07 16:49] – created - external edit 127.0.0.1msc:notes:metric_spaces_notes [2023/08/08 11:37] (current) – removed Administrator
Line 1: Line 1:
-====== Metric Spaces (Notes) ====== 
-<html><img src=../../images/triangle_inequality_in_a_metric_space.png class=mediaright alt="triangle inequality in a metric space" title="triangle inequality in a metric space" /></html> 
-These are updated version of previous notes. Many mistakes and errors have been removed. These notes are collected, composed and corrected by [[::Atiq]]. These are actually based on the lectures delivered by Prof. Muhammad Ashfaq (Ex HoD, Department of Mathematics, Government College Sargodha).  
- 
-These notes are very helpful to prepare a section of paper mostly called Topology in MSc for University of the Punjab and University of Sargodha. These are also helpful in BSc. 
- 
-<HTML> 
-<center> 
-</HTML> 
-^ Name  |Metric Spaces (Notes) - Version 2  | 
-^ Author  |[[::Atiq]]  | 
-^ Lectures  |Prof. Muhammad Ashfaq  | 
-^ Pages  |24 pages  | 
-^ Format  |PDF  |  
-^ Size  |275KB  | 
-<HTML> 
-</center> 
-</HTML> 
- 
-==== CONTENTS OR SUMMARY:==== 
-  * Metric Spaces and examples 
-  * Pseudometric and example 
-  * Distance between sets 
-  * Theorem: Let $(X,d)$ be a metric space. Then for any $x,y\in X$, $$\left| {\,d(x,\,A)\, - \,d(y,\,A)\,} \right|\,\, \le \,\,d(x,\,y).$$ 
-  * Diameter of a set 
-  * Bounded Set 
-  * Theorem: The union of two bounded set is bounded. 
-  * Open Ball, closed ball, sphere and examples 
-  * Open Set 
-  * Theorem: An open ball in metric space //X// is open.  
-  * Limit point of a set 
-  * Closed Set 
-  * Theorem: A subset //A// of a metric space is closed if and only if its complement $A^c$ is open. 
-  * Theorem: A closed ball is a closed set. 
-  * Theorem: Let (//X,d//) be a metric space and  $A\subset X$. If $x \in X$ is a limit point of //A//. Then every open ball $B(x;r)$ with centre //x// contain an infinite numbers of point of //A//. 
-  * Closure of a Set 
-  * Dense Set 
-  * Countable Set 
-  * Separable Space 
-  * Theorem: Let (//X,d//) be a metric space, $A \subset X$ is dense if and only if //A// has non-empty intersection with any open subset of //X//. 
-  * Neighbourhood of a Point 
-  * Interior Point 
-  * Continuity 
-  * Theorem: $f:(X,d)\to (Y,d')$ is continuous at $x_0\in X$ if and only if $f^{-1}(G)$ is open is //X//. wherever //G// is open in //Y//. 
-  * Convergence of Sequence 
-  * Theorem: If $(x_n)$  is converges then limit of $(x_n)$ is unique. 
-  * Theorem: (i) A convergent sequence is bounded. (ii) ii) If ${x_n}\to x$ and ${y_n}\to y$ then $d(x_n,y_n)\to d(x,y)$. 
-  * Cauchy Sequence 
-  * Theorem: A convergent sequence in a metric space (//X,d//) is Cauchy. 
-  * Subsequence 
-  * Theorem: (i) Let $(x_n)$ be a Cauchy sequence in (//X,d//), then $(x_n)$ converges to a point $x\in X$ if and only if $(x_n)$ has a convergent subsequence $\left(x_{n_k}\right)$ which converges to $x\in X$. 
-  * (ii) If $(x_n)$ converges to $x\in X$, then every subsequence $\left(x_{n_k}\right)$ also converges to $x\in X$. 
-  * Theorem: Let (//X,d//) be a metric space and $M \subseteq X$. (i) Then $x\in\overline{M}$ if and only if there is a sequence $(x_n)$ in //M// such that  $x_n\to x$. (ii) If for any sequence $(x_n)$ in //M//, ${x_n}\to x\quad\Rightarrow\quad x\in M$, then //M// is closed. 
-  * Complete Space  
-  * Subspace 
-  * Theorem: A subspace of a complete metric space (//X,d//) is complete if and only if //Y// is closed in //X//. 
-  * Nested Sequence 
-  * Theorem (Cantor’s Intersection Theorem): A metric space (//X,d//) is complete if and only if every nested sequence of non-empty closed subset of //X//, whose diameter tends to zero, has a non-empty intersection. 
-  * Complete Space (Examples) 
-  * Theorem: The real line is complete. 
-  * Theorem: The Euclidean space $\mathbb{R}^n$ is complete. 
-  * Theorem: The space $l^{\infty}$ is complete. 
-  * Theorem: The space **C** of all convergent sequence of complex number is complete. 
-  * Theorem: The space $l^p,p\ge1$ is a real number, is complete. 
-  * Theorem: The space **C**[a, b] is complete. 
-  * Theorem: If $(X,d_1)$ and $\left(Y,d_2\right)$ are complete then $X\times Y$ is complete. 
-  * Theorem: $f:\left(X,d\right)\to\left(Y,d'\right)$ is continuous at $x_0\in X$ if and only if $x_n\to x$ implies $f(x_n)\to f(x_0)$. 
-  * Rare (or nowhere dense in //X//) 
-  * Meager (or of the first category) 
-  * Non-meager (or of the second category) 
-  * Bair’s Category Theorem: If $X\ne\phi$ is complete then it is non-meager in itself "OR" A complete metric space is of second category. 
- 
-==== Download or View online ==== 
-<callout type="success" icon="fa fa-download"> 
-  * **[[pdf>files/msc/metric_space/dn.php?file=Metric_Spaces_V2.pdf|Download PDF]] (275KB)** %%|%% **[[mscnotes>metric_space/Metric_Spaces_V2|View Online]]**\\ 
-  * **To view online at Scribd %%[%%[[http://www.scribd.com/doc/64053322/Metric-Spaces-V2|Click Here]]%%]%%** 
-</callout> 
- 
-{{tag>MSc Metric_Space MSc_Notes}} 
-