Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
msc:mcqs_short_questions:real_analysis [2023/04/01 18:37] – [Edit - Panel] Administratormsc:mcqs_short_questions:real_analysis [2023/04/03 04:06] (current) – [Series of Numbers] Administrator
Line 30: Line 30:
     * (C) Additive identity     * (C) Additive identity
     * (D) Additive inverse of zero \\ <btn type="link" collapse="a1">See Answer</btn><collapse id="a1" collapsed="true">(B): zero is neither positive not negative</collapse>     * (D) Additive inverse of zero \\ <btn type="link" collapse="a1">See Answer</btn><collapse id="a1" collapsed="true">(B): zero is neither positive not negative</collapse>
-</panel><panel>+</panel> 
 +<panel>
  2. Which one of them is not interval.  2. Which one of them is not interval.
     * (A) $(1,2)$     * (A) $(1,2)$
     * (B) $\left(\frac{1}{2},\frac{1}{3} \right)$     * (B) $\left(\frac{1}{2},\frac{1}{3} \right)$
     * (C) $[3. \pi]$     * (C) $[3. \pi]$
-    * (D) $(2\pi,180)$ \\ <btn type="link" collapse="a2">See Answer</btn><collapse id="a2" collapsed="true">(B): In interval (a,b), a<b.</collapse> +    * (D) $(2\pi,180)$ \\ <btn type="link" collapse="a2">See Answer</btn><collapse id="a2" collapsed="true">(B): In interval $(a,b)$$a<b$ but $\frac{1}{2}>\frac{1}{3}$.</collapse> 
- </panel><panel>+ </panel> 
 +<panel>
  3. A number which is neither even nor odd is   3. A number which is neither even nor odd is 
     * (A) 0     * (A) 0
     * (B) 2     * (B) 2
     * (C) $2n$ such that $n \in \mathbb{Z}$     * (C) $2n$ such that $n \in \mathbb{Z}$
-    * (D) $2\pi$ \\ <btn type="link" collapse="a3">See Answer</btn><collapse id="a3" collapsed="true">(D): $2\pi$ is not an integer.</collapse> +    * (D) $2\pi$ \\ <btn type="link" collapse="a3">See Answer</btn><collapse id="a3" collapsed="true">(D): Integers can only be even or odd but $2\pi$ is not an integer.</collapse> 
- </panel><panel>+ </panel> 
 +<panel>
  4. A number which is neither positive nor negative is   4. A number which is neither positive nor negative is 
     * (A) 0     * (A) 0
Line 79: Line 82:
     * (D) does not exist \\ <btn type="link" collapse="a9">See Answer</btn><collapse id="a9" collapsed="true">(C): In tabular form $A=\{1, 2 \}$ and set of upper bouds is $\{2,3,4,... \}$. Now supremum is least upper bound $2$. </collapse>     * (D) does not exist \\ <btn type="link" collapse="a9">See Answer</btn><collapse id="a9" collapsed="true">(C): In tabular form $A=\{1, 2 \}$ and set of upper bouds is $\{2,3,4,... \}$. Now supremum is least upper bound $2$. </collapse>
  </panel>  </panel>
- ==== Sequence of Numbers ====+==== Sequence of Numbers ====
  <panel>  <panel>
  1. A convergent sequence has only ................ limit(s).  1. A convergent sequence has only ................ limit(s).
Line 104: Line 107:
     * (C) divergent.     * (C) divergent.
     * (D) bounded. \\ <btn type="link" collapse="a13">See Answer</btn><collapse id="a13" collapsed="true">(D): As $|(-1)^n| = 1 < 1.1$ for all $n \in \mathbb{N}, therefore it is bounded.$</collapse>     * (D) bounded. \\ <btn type="link" collapse="a13">See Answer</btn><collapse id="a13" collapsed="true">(D): As $|(-1)^n| = 1 < 1.1$ for all $n \in \mathbb{N}, therefore it is bounded.$</collapse>
- </panel><panel> + </panel> 
-5. A sequence $\{\dfrac{1}{n} \}$ is+<panel> 
 +5. A sequence $\left\{\dfrac{1}{n} \right\}$ is
     * (A) bounded.     * (A) bounded.
     * (B) unbounded.     * (B) unbounded.
     * (C) divergent.     * (C) divergent.
-    * (D) None of these. \\ <btn type="link" collapse="a14">See Answer</btn><collapse id="a14" collapsed="true">(A): As $\{\dfrac{1}{n} \}$ is convergent, it is bounded or it is easy to see $|\dfrac{1}{n}| \leq 1$ for all $n \in \mathbb{N}.</collapse> +    * (D) None of these. \\ <btn type="link" collapse="a14">See Answer</btn><collapse id="a14" collapsed="true">(A): As $\left\{\dfrac{1}{n} \right\}$ is convergent, it is bounded or it is easy to see $\left|\dfrac{1}{n} \right| \leq 1$ for all $n \in \mathbb{N}$.</collapse> 
- </panel><panel>+ </panel> 
 +<panel>
 6. A sequence $\{s_n\}$ is said be Cauchy if for $\epsilon>0$, there exists positive integer $n_0$ such that  6. A sequence $\{s_n\}$ is said be Cauchy if for $\epsilon>0$, there exists positive integer $n_0$ such that 
     * (A) $|s_n-s_m|<\epsilon$ for all $n,m>0$.     * (A) $|s_n-s_m|<\epsilon$ for all $n,m>0$.
Line 164: Line 169:
     * (C) is convergent.     * (C) is convergent.
     * (D) is divergent. \\ <btn type="link" collapse="214">See Answer</btn><collapse id="214" collapsed="true">(D): Every subsequence of convergent sequence converges to the same limit.</collapse>     * (D) is divergent. \\ <btn type="link" collapse="214">See Answer</btn><collapse id="214" collapsed="true">(D): Every subsequence of convergent sequence converges to the same limit.</collapse>
- </panel><panel> 
-  - A series $\sum a_n$ is convergent if and only if ..................... is convergent  
-    * (A) $\{\sum_{k=1}^{\infty}a_k \}$ 
-    * (B) $\{\sum_{k=1}^{n}a_k \}$ 
-    * (C) $\{\sum_{n=1}^{\infty}a_k \}$ 
-    * (D) $\{ a_n \}$  \\ <btn type="link" collapse="214">See Answer</btn><collapse id="214" collapsed="true">(D): Every subsequence of convergent sequence converges to the same limit.</collapse> 
  </panel>  </panel>
-  ==== Series of Numbers ====+==== Series of Numbers ====
 <panel> <panel>
 1.  A series $\sum_{n=1}^\infty a_n$ is said to be convergent if the sequence $\{ s_n \}$, where .................. 1.  A series $\sum_{n=1}^\infty a_n$ is said to be convergent if the sequence $\{ s_n \}$, where ..................
Line 234: Line 233:
     * (C) $\sum |a_n|$ is convergent.     * (C) $\sum |a_n|$ is convergent.
     * (D) $\sum |a_n|$ is divergent but $\sum a_n$ is convergent. \\ <btn type="link" collapse="310">See Answer</btn><collapse id="310" collapsed="true">(C): It is definition of absolutely convergent. </collapse>     * (D) $\sum |a_n|$ is divergent but $\sum a_n$ is convergent. \\ <btn type="link" collapse="310">See Answer</btn><collapse id="310" collapsed="true">(C): It is definition of absolutely convergent. </collapse>
 + </panel><panel>
 +11. A series $\sum a_n$ is convergent if and only if ..................... is convergent 
 +    * (A) $\{\sum_{k=1}^{\infty}a_k \}$
 +    * (B) $\{\sum_{k=1}^{n}a_k \}$
 +    * (C) $\{\sum_{n=1}^{\infty}a_k \}$
 +    * (D) $\{ a_n \}$  \\ <btn type="link" collapse="311">See Answer</btn><collapse id="311" collapsed="true">(B): By definition, a series is convergent if its sequence of partial sum is convergent.</collapse>
  </panel>  </panel>
 ==== Limit of functions ==== ==== Limit of functions ====
Line 268: Line 273:
    * (C) $3.8$    * (C) $3.8$
    * (D) $0.1$ \\ <btn type="link" collapse="602">See Answer</btn><collapse id="602" collapsed="true">(C): Maximum distance between any two points of the partition is norm, which is $7-3.2=3.8$.</collapse>    * (D) $0.1$ \\ <btn type="link" collapse="602">See Answer</btn><collapse id="602" collapsed="true">(C): Maximum distance between any two points of the partition is norm, which is $7-3.2=3.8$.</collapse>
-<panel>+</panel>