Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
msc:mcqs_short_questions:real_analysis [2021/10/11 17:48] Administratormsc:mcqs_short_questions:real_analysis [2023/04/03 04:06] (current) – [Series of Numbers] Administrator
Line 21: Line 21:
   - Give an example to prove that bounded sequence may not convergent.   - Give an example to prove that bounded sequence may not convergent.
   - Prove that every convergent sequence is bounded.   - Prove that every convergent sequence is bounded.
-  -  
  
 ===== Multiple choice questions (MCQs) ===== ===== Multiple choice questions (MCQs) =====
-  - What is not true about number zero.+==== Real Number System==== 
 +<panel> 
 +1.  What is not true about number zero.
     * (A) Even     * (A) Even
     * (B) Positive     * (B) Positive
     * (C) Additive identity     * (C) Additive identity
     * (D) Additive inverse of zero \\ <btn type="link" collapse="a1">See Answer</btn><collapse id="a1" collapsed="true">(B): zero is neither positive not negative</collapse>     * (D) Additive inverse of zero \\ <btn type="link" collapse="a1">See Answer</btn><collapse id="a1" collapsed="true">(B): zero is neither positive not negative</collapse>
-  - Which one of them is not interval.+</panel> 
 +<panel> 
 + 2. Which one of them is not interval.
     * (A) $(1,2)$     * (A) $(1,2)$
     * (B) $\left(\frac{1}{2},\frac{1}{3} \right)$     * (B) $\left(\frac{1}{2},\frac{1}{3} \right)$
     * (C) $[3. \pi]$     * (C) $[3. \pi]$
-    * (D) $(2\pi,180)$ \\ <btn type="link" collapse="a2">See Answer</btn><collapse id="a2" collapsed="true">(B): In interval (a,b), a<b.</collapse> +    * (D) $(2\pi,180)$ \\ <btn type="link" collapse="a2">See Answer</btn><collapse id="a2" collapsed="true">(B): In interval $(a,b)$$a<b$ but $\frac{1}{2}>\frac{1}{3}$.</collapse> 
-  A number which is neither even nor odd is + </panel> 
 +<panel> 
 + 3. A number which is neither even nor odd is 
     * (A) 0     * (A) 0
     * (B) 2     * (B) 2
     * (C) $2n$ such that $n \in \mathbb{Z}$     * (C) $2n$ such that $n \in \mathbb{Z}$
-    * (D) $2\pi$ \\ <btn type="link" collapse="a3">See Answer</btn><collapse id="a3" collapsed="true">(D): $2\pi$ is not an integer.</collapse> +    * (D) $2\pi$ \\ <btn type="link" collapse="a3">See Answer</btn><collapse id="a3" collapsed="true">(D): Integers can only be even or odd but $2\pi$ is not an integer.</collapse> 
-  A number which is neither positive nor negative is + </panel> 
 +<panel> 
 + 4. A number which is neither positive nor negative is 
     * (A) 0     * (A) 0
     * (B) 1     * (B) 1
     * (C) $\pi$     * (C) $\pi$
-    * (D) None of these +    * (D) None of these \\ <btn type="link" collapse="a4">See Answer</btn><collapse id="a4" collapsed="true">(A): zero is number which is neither positive nor negative . </collapse> 
-  Concept of the divisibility only exists in set of ..............+ </panel><panel> 
 + 5. Concept of the divisibility only exists in set of ..............
     * (A) natural numbers     * (A) natural numbers
     * (B) integers     * (B) integers
     * (C) rational numbers     * (C) rational numbers
-    * (D) real numbers +    * (D) real numbers \\ <btn type="link" collapse="a5">See Answer</btn><collapse id="a5" collapsed="true">(B): In integers, we define divisibility rugosely </collapse> 
-  If a real number is not rational then it is ...............+ </panel><panel> 
 + 6. If a real number is not rational then it is ...............
     * (A) integer     * (A) integer
     * (B) algebraic number     * (B) algebraic number
     * (C) irrational number     * (C) irrational number
-    * (D) complex numbers +    * (D) complex numbers \\ <btn type="link" collapse="a6">See Answer</btn><collapse id="a6" collapsed="true">(C): Real numbers can be partitioned into rational and irrational. </collapse> 
-  Which of the following numbers is not irrational.+ </panel><panel> 
 + 7. Which of the following numbers is not irrational.
     * (A) $\pi$     * (A) $\pi$
     * (B) $\sqrt{2}$         * (B) $\sqrt{2}$    
     * (C) $\sqrt{3}$     * (C) $\sqrt{3}$
-    * (D) 7 +    * (D) 7 \\ <btn type="link" collapse="a7">See Answer</btn><collapse id="a7" collapsed="true">(D): Its easy to see </collapse> 
-  A set $A$ is said to be countable if there exists a function $f:A\to \mathbb{N}$ such that+ </panel><panel> 
 + 8. A set $A$ is said to be countable if there exists a function $f:A\to \mathbb{N}$ such that
     * (A) $f$ is bijective     * (A) $f$ is bijective
     * (B) $f$ is surjective     * (B) $f$ is surjective
     * (C) $f$ is identity map     * (C) $f$ is identity map
-    * (D) None of these +    * (D) None of these \\ <btn type="link" collapse="a8">See Answer</btn><collapse id="a8" collapsed="true">(A): By definition of countable set, it must be bijective. </collapse> 
-  Let $A=\{x| x\in \mathbb{N} \wedge x^2 \leq 7 \}$. Then supremum of $A$ is+ </panel><panel> 
 + 9. Let $A=\{x| x\in \mathbb{N} \wedge x^2 \leq 7 \} \subset  \mathbb{N}$. Then supremum of $A$ is
     * (A) 7     * (A) 7
     * (B) 3     * (B) 3
-    * (C) does not exist +    * (C) 2 
-    * (D) 0 +    * (D) does not exist \\ <btn type="link" collapse="a9">See Answer</btn><collapse id="a9" collapsed="true">(C): In tabular form $A=\{1, 2 \}$ and set of upper bouds is $\{2,3,4,... \}$. Now supremum is least upper bound $2$. </collapse> 
-  A convergent sequence has only ................ limit(s).+ </panel> 
 +==== Sequence of Numbers ==== 
 + <panel> 
 + 1. A convergent sequence has only ................ limit(s).
     * (A) one     * (A) one
     * (B) two     * (B) two
     * (C) three     * (C) three
-    * (D) None of these +    * (D) None of these \\ <btn type="link" collapse="a10">See Answer</btn><collapse id="a10" collapsed="true">(A): limit of the sequence, if it exist, is unique.</collapse> 
-  A sequence $\{s_n\}$ is said to be bounded if+ </panel><panel> 
 + 2. A sequence $\{s_n\}$ is said to be bounded if
     * (A) there exists  number $\lambda$ such that $|s_n|<\lambda$ for all $n\in\mathbb{Z}$.     * (A) there exists  number $\lambda$ such that $|s_n|<\lambda$ for all $n\in\mathbb{Z}$.
     * (B) there exists real number $p$ such that $|s_n|<p$ for all $n\in\mathbb{Z}$.     * (B) there exists real number $p$ such that $|s_n|<p$ for all $n\in\mathbb{Z}$.
-    * (C) there exists positive real number $s$ such that $|s_n|<s$ for all $n\in\mathbb{Z}$. +    * (C) there exists positive real number $s$ such that $|s_n|<s$ for all $n\in\mathbb{Z^+}$. 
-    * (D) the term of the sequence lies in a vertical strip of finite width. +    * (D) the term of the sequence lies in a vertical strip of finite width. \\ <btn type="link" collapse="a11">See Answer</btn><collapse id="a11" collapsed="true">(C): It is a definition of bounded sequence.</collapse> 
-  If the sequence is convergent then+ </panel><panel> 
 +3. If the sequence is convergent then
     * (A) it has two limits.     * (A) it has two limits.
     * (B) it is bounded.     * (B) it is bounded.
     * (C) it is bounded above but may not be bounded below.     * (C) it is bounded above but may not be bounded below.
-    * (D) it is bounded below but may not be bounded above. +    * (D) it is bounded below but may not be bounded above. \\ <btn type="link" collapse="a12">See Answer</btn><collapse id="a12" collapsed="true">(B): If a sequence of real numbers is convergent, then it is bounded.</collapse> 
-  A sequence $\{(-1)^n\}$ is+ </panel><panel> 
 +4. A sequence $\{(-1)^n\}$ is
     * (A) convergent.     * (A) convergent.
     * (B) unbounded.     * (B) unbounded.
     * (C) divergent.     * (C) divergent.
-    * (D) bounded. +    * (D) bounded. \\ <btn type="link" collapse="a13">See Answer</btn><collapse id="a13" collapsed="true">(D): As $|(-1)^n| = 1 < 1.1$ for all $n \in \mathbb{N}, therefore it is bounded.$</collapse> 
-  - A sequence $\{\frac{1}{n} \}$ is+ </panel> 
 +<panel> 
 +5. A sequence $\left\{\dfrac{1}{n} \right\}$ is
     * (A) bounded.     * (A) bounded.
     * (B) unbounded.     * (B) unbounded.
     * (C) divergent.     * (C) divergent.
-    * (D) None of these. +    * (D) None of these. \\ <btn type="link" collapse="a14">See Answer</btn><collapse id="a14" collapsed="true">(A): As $\left\{\dfrac{1}{n} \right\}$ is convergent, it is bounded or it is easy to see $\left|\dfrac{1}{n} \right| \leq 1$ for all $n \in \mathbb{N}$.</collapse> 
-  A sequence $\{s_n\}$ is said be Cauchy if for $\epsilon>0$, there exists positive integer $n_0$ such that + </panel> 
 +<panel> 
 +6. A sequence $\{s_n\}$ is said be Cauchy if for $\epsilon>0$, there exists positive integer $n_0$ such that 
     * (A) $|s_n-s_m|<\epsilon$ for all $n,m>0$.     * (A) $|s_n-s_m|<\epsilon$ for all $n,m>0$.
     * (B) $|s_n-s_m|<n_0$ for all $n,m>\epsilon$.     * (B) $|s_n-s_m|<n_0$ for all $n,m>\epsilon$.
     * (C) $|s_n-s_m|<\epsilon$ for all $n,m>n_0$.     * (C) $|s_n-s_m|<\epsilon$ for all $n,m>n_0$.
-    * (D) $|s_n-s_m|<\epsilon$ for all $n,m<n_0$. +    * (D) $|s_n-s_m|<\epsilon$ for all $n,m<n_0$. \\ <btn type="link" collapse="a15">See Answer</btn><collapse id="a15" collapsed="true">(C): Definition of Cauchy sequence.</collapse> 
-  Every Cauchy sequence has a ...............+ </panel><panel> 
 +7. Every Cauchy sequence has a ...............
     * (A) convergent subsequence.     * (A) convergent subsequence.
     * (B) increasing subsequence.     * (B) increasing subsequence.
     * (C) decreasing subsequence.     * (C) decreasing subsequence.
-    * (D) positive subsequence. +    * (D) positive subsequence. \\ <btn type="link" collapse="a16">See Answer</btn><collapse id="a16" collapsed="true">(A): Every Cauchy sequence has a convergent subsequence.</collapse> 
-  A sequence of real number is Cauchy iff+ </panel><panel> 
 +8. A sequence of real number is Cauchy iff
     * (A) it is bounded     * (A) it is bounded
     * (B) it is convergent     * (B) it is convergent
     * (C) it is positive term sequence     * (C) it is positive term sequence
-    * (D) it is convergent but not bounded. +    * (D) it is convergent but not bounded. \\ <btn type="link" collapse="a17">See Answer</btn><collapse id="a17" collapsed="true">(B): Cauchy criterion for convergence of sequences.</collapse> 
-  Let $\{s_n\}$ be a convergent sequence. If $\lim_{n\to\infty}s_n=s$, then+ </panel><panel> 
 +9. Let $\{s_n\}$ be a convergent sequence. If $\lim_{n\to\infty}s_n=s$, then
     * (A) $\lim_{n\to\infty}s_{n+1}=s+1$     * (A) $\lim_{n\to\infty}s_{n+1}=s+1$
     * (B) $\lim_{n\to\infty}s_{n+1}=s$     * (B) $\lim_{n\to\infty}s_{n+1}=s$
     * (C) $\lim_{n\to\infty}s_{n+1}=s+s_1$     * (C) $\lim_{n\to\infty}s_{n+1}=s+s_1$
-    * (D) $\lim_{n\to\infty}s_{n+1}=s^2$. +    * (D) $\lim_{n\to\infty}s_{n+1}=s^2$. \\ <btn type="link" collapse="a18">See Answer</btn><collapse id="a18" collapsed="true">(B): If $n\to\infty$, then $n+1\to\infty$ too.</collapse> 
-  Every convergent sequence has ................. one limit.+ </panel><panel> 
 +10. Every convergent sequence has ................. one limit.
     * (A) at least     * (A) at least
     * (B) at most     * (B) at most
     * (C) exactly     * (C) exactly
-    * (D) none of these +    * (D) none of these \\ <btn type="link" collapse="210">See Answer</btn><collapse id="210" collapsed="true">(C): Every convergent sequence has unique limit.</collapse> 
-  If the sequence is decreasing, then it  ................+ </panel><panel> 
 +11. If the sequence is decreasing, then it  ................
     * (A) converges to its infimum.     * (A) converges to its infimum.
     * (B) diverges.     * (B) diverges.
     * (C) may converges to its infimum     * (C) may converges to its infimum
-    * (D) is bounded. +    * (D) is bounded. \\ <btn type="link" collapse="211">See Answer</btn><collapse id="211" collapsed="true">(C): If the sequence is bounded and decreasing, then it convergent.</collapse> 
-  If the sequence is increasing, then it  ................+ </panel><panel> 
 +12. If the sequence is increasing, then it  ................
     * (A) converges to its supremum.     * (A) converges to its supremum.
     * (B) diverges.     * (B) diverges.
     * (C) may converges to its supremum.     * (C) may converges to its supremum.
-    * (D) is bounded. +    * (D) is bounded. \\ <btn type="link" collapse="212">See Answer</btn><collapse id="212" collapsed="true">(C): If the sequence is bounded and decreasing, then it convergent.</collapse> 
-  If a sequence converges to $s$, then .............. of its sub-sequences converges to $s$.+ </panel><panel> 
 +13. If a sequence converges to $s$, then .............. of its sub-sequences converges to $s$.
     * (A) each     * (A) each
     * (B) one     * (B) one
     * (C) few     * (C) few
-    * (D) none +    * (D) none \\ <btn type="link" collapse="213">See Answer</btn><collapse id="213" collapsed="true">(A): Every subsequence of convergent sequence converges to the same limit.</collapse> 
-  If two sub-sequences of a sequence converge to two different limits, then a sequence ...............+ </panel><panel> 
 +14. If two sub-sequences of a sequence converge to two different limits, then a sequence ...............
     * (A) may convergent.     * (A) may convergent.
     * (B) may divergent.     * (B) may divergent.
     * (C) is convergent.     * (C) is convergent.
-    * (D) is divergent. +    * (D) is divergent. \\ <btn type="link" collapse="214">See Answer</btn><collapse id="214" collapsed="true">(D): Every subsequence of convergent sequence converges to the same limit.</collapse> 
-  A series $\sum a_n$ is convergent if and only if ..................... is convergent  + </panel> 
-    * (A) $\{\sum_{k=1}^{\infty}a_k \}$ +==== Series of Numbers ==== 
-    * (B) $\{\sum_{k=1}^{n}a_k \}$ +<panel> 
-    * (C) $\{\sum_{n=1}^{\infty}a_k \}$ +1.  A series $\sum_{n=1}^\infty a_n$ is said to be convergent if the sequence $\{ s_n \}$, where .................. 
-    * (D) $\{ a_n \}$ +    * (A) $s_n=\sum_{n=1}^\infty a_n$ is convergent. 
-  Let $\sum a_n$ be a series of non-negative terms. Then it is convergent if ........... +    * (B) $s_n=\sum_{k=1}^n a_k$ is convergent. 
-    * (A) it is bounded. +    * (C) $s_n=\sum_{k=1}^n a_nis convergent. 
-    * (B) it may bounded. +    * (D) $s_n=\sum_{k=1}^n a_k$ is divergent. \\ <btn type="link" collapse="301">See Answer</btn><collapse id="301" collapsed="true">(B): Series is convergent if its sequence of partial sume is convergent.</collapse> 
-    * (C) it is unbounded. +</panel><panel> 
-    * (D) it may unbounded. +2.  If  $\sum_{n=1}^\infty a_n$  converges then  ........................... 
-  - If $\lim_{n\to\infty} a_n=0$, then $\sum a_n$ ................+    *  (A) $\lim_{n\to \inftya_n=0$. 
 +    * (B) $\lim_{n\to \inftya_n=1$. 
 +    * (C) $\lim_{n\to \infty} a_n \neq 0$ 
 +    * (D) $\lim_{n\to \infty} a_n$ exists. \\ <btn type="link" collapse="302">See Answer</btn><collapse id="302" collapsed="true">(A)</collapse> 
 +</panel> 
 +<panel> 
 +3.  If  $\lim_{n\to \infty} a_n \neq 0$, then $\sum_{n=1}^\infty a_n$    ........................... 
 +    *  (A) is convergent. 
 +    * (B) may convergent. 
 +    * (C) is divergent 
 +    * (D) is bounded. \\ <btn type="link" collapse="303">See Answer</btn><collapse id="303" collapsed="true">(C): It is called divergent test</collapse> 
 +</panel> 
 +<panel> 
 +4.  A series $\sum_{n=1}^\infty \left( 1+\frac{1}{n} \right)is ....................  
 +    *  (A) convergent. 
 +    * (B) divergent. 
 +    * (C) constant. 
 +    * (D) none of these \\ <btn type="link" collapse="304">See Answer</btn><collapse id="304" collapsed="true">(B): As $\lim_{n\to \infty}\,\left( 1+\frac{1}{n} \right)=1\ne 0$, therefore by divergent test, the given series is divergent.</collapse> 
 +</panel><panel> 
 +5. Let $\sum a_n$ be a series of non-negative terms. Then it is convergent if its sequence of partial sum ............... 
 +    * (A) is bounded. 
 +    * (B) may bounded. 
 +    * (C) is unbounded. 
 +    * (D) is divergent\\ <btn type="link" collapse="305">See Answer</btn><collapse id="305" collapsed="true">(A): If  $\sum a_n$ is a non-negative terms series, then its sequence of partial sum is increasing. A monotone sequence of partial sume is convergent, if it is bounded.</collapse> 
 + </panel><panel> 
 + 6. If $\lim_{n\to\infty} a_n=0$, then $\sum a_n$ ................
     * (A) is convergent.     * (A) is convergent.
     * (B) is divergent.     * (B) is divergent.
     * (C) may or may not convergent     * (C) may or may not convergent
-    * (D) none of these +    * (D) none of these \\ <btn type="link" collapse="306">See Answer</btn><collapse id="306" collapsed="true">(C): If  $\sum a_n$ is convergent, then $\lim_{n\to\infty} a_n=0$ but converse may not true. e.g., $\sum \frac{1}{n}$ is divergent. </collapse> 
-  A series $\sum \frac{1}{n^p}$ is convergent if + </panel><panel> 
-    * (A) $p\geq 1$. +7. A series $\sum \frac{1}{n^p}$ is convergent if 
-    * (B) $p\leq 1$. +    * (A) $p\leq 1$. 
-    * (C) $p>1$. +    * (B) $p\geq 1$. 
-    * (D) $p<1$. +    * (C) $p<1$. 
-  - If a sequence $\{a_n\}$ is convergent then the series $\sum a_n$ ................+    * (D) $p>1$. \\ <btn type="link" collapse="307">See Answer</btn><collapse id="307" collapsed="true">(D): The p-series test, it can be proved easily by Cauchy condensation test.  </collapse> 
 + </panel><panel> 
 + 8- If a sequence $\{a_n\}$ is convergent then the series $\sum a_n$ ................
     * (A) is convergent.     * (A) is convergent.
     * (B) is divergent.     * (B) is divergent.
     * (C) may or may not convergent     * (C) may or may not convergent
-    * (D) none of these +    * (D) none of these \\ <btn type="link" collapse="308">See Answer</btn><collapse id="308" collapsed="true">(C): The p-series test, it can be proved easily by Cauchy condensation test. </collapse> 
-  - An alternating series $\sum (-1)^n a_n$, where $a_n\geq 0$ for all $n$, is convergent if+ </panel><panel> 
 + 9. An alternating series $\sum (-1)^n a_n$, where $a_n\geq 0$ for all $n$, is convergent if
     * (A) $\{a_n\}$ is convergent.     * (A) $\{a_n\}$ is convergent.
     * (B) $\{a_n\}$ is decreasing.     * (B) $\{a_n\}$ is decreasing.
     * (C) $\{a_n\}$ is bounded.     * (C) $\{a_n\}$ is bounded.
-    * (D) $\{a_n\}$ is decreasing and $\lim a_n=0$. +    * (D) $\{a_n\}$ is decreasing and $\lim a_n=0$. \\ <btn type="link" collapse="309">See Answer</btn><collapse id="309" collapsed="true">(B): Its called alternating series test. </collapse> 
-  An series $\sum a_n$ is said to be absolutely convergent if+ </panel><panel> 
 +10. An series $\sum a_n$ is said to be absolutely convergent if
     * (A) $\left| \sum a_n \right|$ is convergent.     * (A) $\left| \sum a_n \right|$ is convergent.
     * (B) $\left| \sum a_n \right|$ is convergent but $\sum a_n$ is divergent.     * (B) $\left| \sum a_n \right|$ is convergent but $\sum a_n$ is divergent.
     * (C) $\sum |a_n|$ is convergent.     * (C) $\sum |a_n|$ is convergent.
-    * (D) $\sum |a_n|$ is divergent but $\sum a_n$ is convergent. +    * (D) $\sum |a_n|$ is divergent but $\sum a_n$ is convergent. \\ <btn type="link" collapse="310">See Answer</btn><collapse id="310" collapsed="true">(C): It is definition of absolutely convergent. </collapse> 
-  A number $L$ is called limit of the function $f$ when $x$ approaches to $c$ if for all $\varepsilon>0$, there exist $\delta>0$ such that ......... whenever $0<|x-c|<\delta$. + </panel><panel> 
-    $|f(x)-L| > \varepsilon$ +11. A series $\sum a_n$ is convergent if and only if ..................... is convergent  
-    $|f(x)-L| < \varepsilon$ +    * (A) $\{\sum_{k=1}^{\infty}a_k \}$ 
-    $|f(x)-L| \leq \varepsilon$ +    * (B) $\{\sum_{k=1}^{n}a_k \}$ 
-    $|f(x)-L| \geq \varepsilon$  +    * (C) $\{\sum_{n=1}^{\infty}a_k \}$ 
-  If $\lim_{x \to c}f(x)=L$, then ............ sequence $\{x_n\}$ such that $x_n \to c$, when $n\to \infty$, one has $\lim_{n \to \infty}f(x_n)=L$. +    * (D) $\{ a_n \}$  \\ <btn type="link" collapse="311">See Answer</btn><collapse id="311" collapsed="true">(B): By definition, a series is convergent if its sequence of partial sum is convergent.</collapse> 
-    for some + </panel> 
-    for every +==== Limit of functions ==== 
-    for few +<panel> 
-    none +1. A number $L$ is called limit of the function $f$ when $x$ approaches to $c$ if for all $\varepsilon>0$, there exist $\delta>0$ such that ......... whenever $0<|x-c|<\delta$. 
-  Let $f(x)=\frac{x^2-5x+6}{x-3}$, then $\lim_{x\to 3}f(x)=$........... +    * (A) $|f(x)-L| > \varepsilon$ 
-    $-1$ +    * (B) $|f(x)-L| < \varepsilon$ 
-    $0$ +    * (C) $|f(x)-L| \leq \varepsilon$ 
-    $1$ +    * (D) $|f(x)-L| \geq \varepsilon$  \\ <btn type="link" collapse="401">See Answer</btn><collapse id="401" collapsed="true">(B): It is a definition of limit of functions. </collapse> 
-    doesn't exist. + </panel><panel> 
-  - Which one is not partition of interval $[1,5]$. +2. If $\lim_{x \to c}f(x)=L$, then .............. sequence $\{x_n\}$ such that $x_n \to c$, when $n\to \infty$, one has $\lim_{n \to \infty}f(x_n)=L$. 
-    $\{1,2,3,5 \}$ +    * (A) for some 
-    $\{1,3,3.5,5 \}$ +    * (B) for every 
-    $\{1,1.1,5 \}$ +    * (C) for few 
-    $\{1,2,3,4,5 \}$  +    * (D) none of these \\ <btn type="link" collapse="402">See Answer</btn><collapse id="402" collapsed="true">(B) </collapse> 
-  What is norm of partition $\{0,3,3.1,3.2,7,10 \}$ of interval $[0,10]$. + </panel><panel> 
-    $10$ +3. Let $f(x)=\frac{x^2-5x+6}{x-3}$, then $\lim_{x\to 3}f(x)=$........... 
-    $3$ +    * (A) $-1$ 
-    $3.8$ +    * (B) $0$ 
-    $0.1$+    * (C) $1$ 
 +    * (D) doesn't exist. \\ <btn type="link" collapse="403">See Answer</btn><collapse id="403" collapsed="true">(C): $\lim_{x\to 3}f(x)=\frac{x^2-5x+6}{x-3}=\lim_{x\to 3}\frac{(x-2)(x-3)}{x-3}$ $=\lim_{x\to 3}(x-2) = 1$. </collapse> 
 + </panel> 
 +==== Riemann Integrals ==== 
 +<panel> 
 +1. Which one is not partition of interval $[1,5]$. 
 +   * (A) $\{1,2,3,5 \}$ 
 +   * (B) $\{1,3,3.5,5 \}$ 
 +   * (C)$\{1,1.1,5 \}$ 
 +   * (D) $\{1,2.1,3,4,5.5 \}$ \\ <btn type="link" collapse="601">See Answer</btn><collapse id="601" collapsed="true">(D): All points must be between $1$ and $5$.</collapse> 
 + </panel><panel> 
 +2. What is norm of partition $\{0,3,3.1,3.2,7,10 \}$ of interval $[0,10]$. 
 +   * (A) $10$ 
 +   * (B) $3$ 
 +   * (C) $3.8$ 
 +   * (D) $0.1$ \\ <btn type="link" collapse="602">See Answer</btn><collapse id="602" collapsed="true">(C): Maximum distance between any two points of the partition is norm, which is $7-3.2=3.8$.</collapse> 
 +</panel>