Advertisement:


Atiq ur Rehman


Atiq ur Rehman, PhD
Assistant Professor
Department of Mathematics
COMSATS Institute of Information Technology
Attock - PAKISTAN.

Email: Atiq@MathCity.org, atiq@ciit-attock.edu.pk

Field of Research: Difference and functional equations, Real functions, Inequalities in monotonic and convex functions

Research Articles:

  • Ghulam Farid, Atiq ur Rehman and Moquddsa Zahra, On Hadamard Inequalities for relative convex functions via fractional integrals, Nonlinear Anal. Forum 21(1) (2016), 77–86. (link)
  • Ghulam Farid, Atiq ur Rehman, and Moquddsa Zahra. On Hadamard inequalities for k-fractional integrals. 21(3) (2016), 463–478. (link)
  • Atiq Ur Rehman, Muhammad Mudessir, Hafiza Tahira Fazal, and Ghulam Farid. Petrović’s inequality on coordinates and related results. Cogent Mathematics 3(1), (2016): 1227298. (link)
  • G. Farid, Atiq Ur Rehman and J. Pečarić, On generalization of $K$-divergence, its order relation with $J$-divergence and related results, Proyecciones, 35(4), (2016), 383–395. (link)
  • Atiq ur Rehman, and Ghulam Farid, On Chebyshev Functional and Ostrowski-Grus Type Inequalities for Two Coordinates, Int. J. Analysis Appl., 12(2), (2016), 180-187. (link)
  • G. Farid, and Atiq ur Rehman, Generalization of the Fejér-Hadamard’s Inequality for Convex Function on Coordinates, Commun. Korean Math. Soc. 31(1) (2016), 53–64 (link)
  • G. Farid, M. Marwan, and A. U. Rehman, Fejer-Hadamard inequality for convex functions on the coordinates in a rectangle from the plane, Int. J. Analysis Appl. 10(1) (2016), 40-47. (link)
  • G. Farid, M. Marwan and Atiq ur Rehman, New mean value theorems and generalization of Hadamard inequality via coordinated m-convex functions, J. Inequal. Appl. 2015 (2015) Article ID 283, 11pp (link)
  • K.M. Awan, J. Pečarić, Atiq ur Rehman, Steffensen’s generalization of Chebyshev inequality, Journal of Mathematical Inequalities, 9 ( 1), (2015), 155-163. (Link)
  • S.I. Butt, J. Pečarić, Atiq ur Rehman, Non–symmetric Stolarsky means, Journal of Mathematical Inequalities, 7, (2), (2013), 227-237. (Link)
  • J. Pečarić , Atiq Ur Rehman, On Logarithmic Convexity for Giaccardi's Difference, Rad HAZU, 515 (2013), 1–10. (Link)
  • Saad I. Butt, J. Pečarić and Atiq ur Rehman, Exponential convexity of Petrović and related functional, J. Inequal. Appl. 2011, 89 (2011), (Link)
  • J. Pečarić and Atiq ur Rehman, On exponential convexity for power sums and related results, J. Math. Inequal. 5, no. 2 (2011), 265–274 (Link)
  • G. Farid, J. Pečarić and Atiq ur Rehman, On Refinements of Aczél, Popoviciu, Bellman's Inequalities and Related Results, J. Inequal. Appl. 2010, Art. ID 579567, 17 pp (2010). (Link)
  • J. Jakšetić, J. Pečarić, Atiq ur Rehman, On Stolarsky and related means, Math. Inequal. Appl. 13 (4) (2010), 899–909. (Abstract)
  • J. Pečarić, Atiq ur Rehman, Giaccardi's inequality for convex-concave antisymmetric functions and applications, Southeast Asian Bull. Math. (2010) to appear
  • M. Anwar, J. Jakšetić, J. Pečarić, Atiq ur Rehman, Exponential convexity, positive semi-definite matrices and fundamental inequalities, J. Math. Inequal. 4, no. 2 (2010), 171–189
  • J. Jakšetić, J. Pečarić, Atiq ur Rehman, Cauchy means involving Chebyshev functional, Proc. A. Razmadze Math. Inst. 151 (2009), 43–54.
  • J. Pečarić, Atiq ur Rehman, Cauchy means introduced by an inequality of Levin and Stečkin, East J. Approx. 15 (2009), no. 4, 515–524.
  • J. Pečarić, Atiq ur Rehman, On logarithmic convexity for power sums and related results. II, J. Inequal. Appl. 2008, Art. ID 305623, 12 pp. (Link)
  • J. Pečarić, Atiq ur Rehman, On logarithmic convexity for power sums and related results, J. Inequal. Appl. 2008, Art. ID 389410, 9 pp. (Link)
Send a message


Advertisement: