Merging man and maths

Instructions

Maximum time allowed: $31 / 2$ hours.
Each problem worth 20 points.
Write only solutions of the problems, each problem on separate sheet(s).
Give rigorous proofs for all your answers.

PROBLEMS

Problem 1: For every positive integer n, consider the open intervals $\Delta_{n, k}=\left(\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)$, where $k=0,1, \ldots, 2^{n}-1$. Define the function

$$
r_{n}(x)=\left\{\begin{array}{ccc}
(-1)^{k} & \text { if } & x \in \Delta_{n, k} \\
0 & \text { if } & x=\frac{k}{2^{n}}
\end{array}\right.
$$

Give positive integers $n_{1} \leq n_{2} \leq \ldots \leq n_{p}$, Compute the integral

$$
I\left(n_{1}, \ldots, n_{p}\right)=\int_{0}^{1} r_{n_{1}}(x) r_{n_{2}}(x) \ldots r_{n_{p}}(x) d x
$$

Problem 2: a) Show that the additive group $\mathbb{Z} \times \mathbb{Z}$ is not cyclic and find the minimal set of generators for it.
b) Let $n>0$ be an integer, \mathbb{R} be the additive group of real numbers and \mathbf{U} be the multiplicative group of complex numbers of modulo 1 . Show that the group $\mathbb{R} / n \mathbb{Z}$ and \mathbf{U} are isomorphic.

Problem 3: A circle with center at O is divided into n equal arcs, $n \geq 2$, by the points $A_{1}, A_{2}, \ldots, A_{n}$. Find the sum of radius vectors $\overrightarrow{O A_{i}}, i=1,2, \ldots, n$.

Problem 4: Let V be the real vector space of the polynomials $P(X) \in \mathbb{R}[X]$ of degree at most 2 and $f: V \rightarrow V$ the function defined by $f(P(X))=P(X-1)$, for all $P(X) \in V$.
a) Show that f is an isomorphism of vector spaces.
b) Find the polynomial $P(X)$ such that $f(P(X))=X^{2}+X+1$.
c) Find the matrix A of f with respect to the basis $\left\{1, X, X^{2}\right\}$.
d) Find the invariant subspaces of f.
e) Compute A^{n}, for all $n \geq 2$.

Problem 5: For any positive integer n let $C^{n}=[0,1]^{n}$ be the n-dimensional unite cube. Define

$$
I_{n}=\int_{C^{n}} \min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} d x_{1} d x_{2} \ldots d x_{n} .
$$

a) Compute I_{2} and I_{3}.
b) Compute I_{n} for all $n \geq 2$.

For latest news \& updates visit: http://www.MathCity.org

$* ~$

DISCLAIMER

MathCity.org does not represent any official or government/semi-government/private educational institute or board or university. And the material given on this site holds no official position in government/semi-government/private educational institute or board or university. While using a material given on this site you agreed to the term that we (MathCity.org or person related to MathCity.org) do not take any responsibility for this material.

