Wpitter Test bectarer 1987
PUNJAB PUBLIC SERVICE COMMISSION, LAHORE.

Mathematics, Available online @ http://www.MathCity.org/papers

Note: Attempt any five questions, all carry equal marks.
Question 1(a): Give an example of a relation on a set:
(i) Which is reflexive, symmetric but not transitive.
(ii) Which is symmetric and transitive but not reflexive.
(iii) Which is reflexive, transitive but not anti-symmetric.
(b): Let $f: X \leftarrow Y$ be a function and A, B be subsets of X. Show that
(i) $f(A \cup B=f(A) \cup f(B)$.
(ii) $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$

Question 2(a): Show that the set F of all those elements of an abelian group A which have finite order is a subgroup of A.
(b): Let G be a group and $G^{2}=\{(x, y): x, y \in G\}$. Show that G^{2} is a group under the multiplication defined by:
$(x, y)\left(x_{1}, y_{1}\right)=\left(x x_{1}, y y_{1}\right)$ for all $x, x_{1}, y, y_{1} \in G$. Also show that G is embedded in G^{2}.
Question 3(a): Show that the complex valued functions given by:

$$
f_{1}(z)=z, f_{2}(z)=\frac{1}{1-z}, f_{3}(z)=\frac{z-1}{z}, f_{4}(z)=\frac{1}{z}, f_{5}(z)=1-z, f_{6}(z)=\frac{z}{z-1}
$$

form a group under the usual multiplication of mappings. Is this group abelian? Justify.
(b): Define an ideal of a ring. Write three ideals of the ring \mathbb{Z} of integers. Are they maximal?

Question 4(a): Using the properties of the determinants prove that:

$$
\left(\begin{array}{cccc}
2 & 4 & 1 & 12 \\
-1 & 1 & 0 & 3 \\
0 & -1 & 0 & -3 \\
7 & 3 & 6 & 9
\end{array}\right)=0
$$

(b): Let

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
3 & 1 & 3 \\
0 & -2 & 5
\end{array}\right), B=\left(\begin{array}{ccc}
-3 & 2 & 4 \\
4 & 0 & 6 \\
5 & -2 & 3
\end{array}\right)
$$

Find $A \cdot B, B \cdot A$ and show, by evaluating $A \cdot B$, that $A \cdot B=B \cdot A$.
Question 5(a): The correspondence between measurements of temperatures in degree Fahrenheit and degree Centigrade is given by the formula:

$$
5 F-9 C=180
$$

where F is on the Fahrenheit scale and C is on the Centigrade scale. Express C as a linear function of F. Find its graph and determine its slope. Also find corresponding measurements for the given measurements.
(i) $30^{\circ} \mathrm{F}$ (ii) $212^{\circ} \mathrm{F}$ (iii) $50^{\circ} \mathrm{C}$.
(b): Show that among the rectangles having a fixed perimeter P, the square has the maximum area.

Question 6(a): Explain the following concepts with an example of each.
(i) Sequence (ii) Bounded sequence (iii) Convergent sequence (iv) Range of the sequence.
(b): Examine the convergence of the following series:

$$
\text { (i) } \frac{1}{n(\log n)^{p}} \text { (ii) } \frac{(n+1)^{-n}}{n} \text {. }
$$

Question 7(a): Let

$$
f(x)= \begin{cases}\frac{x^{2}}{2}-2, & \text { if } 0<x<2 \\ 2-\frac{8}{x^{2}}, & \text { if } x>2\end{cases}
$$

Does f have limit at $x=2$? If it does then find the limit.
(b):Discuss the continuity of the following functions.
(i) $f(x)=x$. (ii) $\quad g(x)=5 . \quad$ (iii) $h(x)=[x]$.
for all $x \in \mathbb{R}$. Are these differentiable.
Question 8(a): Justify your answer to the following:
(a) Is the set \mathbb{Z} of integers closed in the real line \mathbb{R}.
(b) Is every metric space a T_{1} space.
(c) Is an infinite set with cofinite topology a Hausdorff space.
(d) Is the intersection of any two closed sets is a metric space is closed.

For news and updates
Visit: http://www.MathCity.org

