Merging man and maths

MathCity.org

Written Test Lecturer 1985

PUNJAB PUBLIC SERVICE COMMISSION, LAHORE. Mathematics , Available online @ <u>http://www.mathcity.org</u>

Time Allowed: 2 hours

Maximum Marks: 100

NOTE: Attempt any four questions. Some marks for each question are reserved for neatness any clarity of expression.

Q 1: (a) For any matrix A such that:

$$(I-A)^{-1} = I + A + A^2.$$

(b) Define an idempotent matrix. Show that if an idempotent matrix is non-singular then it must be the identity matrix.

(c) Express $\begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix}^2$ as a single determinant and evaluate.

Q 2: (a) If $A = \begin{vmatrix} 1 & 4 \\ 2 & 3 \end{vmatrix}$, show that its characteristic roots are -1 and 5.

Verify that (A-5I)(A+I) = 0. Explain.

(b) If the vectors v_1, v_2, \dots, v_n are linearly independent, show that

 $v_1, v_1 + v_2, v_1 + v_2 + v_3, \dots, v_1 + v_2 + \dots + v_n$ are also linearly independent. (c) Which of the following transformations are linear.

(i) $T: C[0,1] \to C[0,1]$ given by $(Tf)(x) = f(x) + 1, x \in [0,1], f(x) \in C[0,1]$

(ii)
$$T: C[0,1] \to \mathbb{R}$$
 given by $Tf = \int_0^1 f(x) \cdot g(x) dx$ where g is a fixed function.

Q 3: (a) Show that the union $H \cup K$ of two subgroups H and K of a group G is a subgroup if and only if either $H \subseteq K$ or $K \subseteq H$.

(b) Prove that every subgroup of a cyclic group is cyclic.

(c) Define the centre of a group. What are the centers of the following groups:

The group \mathbb{Z} of integers under addition.

The group $\{\pm 1, \pm i, \pm j, \pm k\}$ of quaternions.

Q 4: (a) Define an ideal of a ring R. Show that the sum I + J of two ideals I and J of a ring R is an ideal of R. Is $I \cap J$ also an ideal? Explain.

(b) Define a division ring. Is every field a division ring? What are the ideals of a field? (c) Find all the sub-rings of the ring \mathbb{Z}_{12} of integers module 12.

Q 5: (a) In a metric space (\mathbf{X}, d) , prove that $|d(x, z) - d(y, z)| \le d(x, y)$ for all $x, y, z \in \mathbf{X}$.

(b) In a metric space (\mathbf{X}, d) , show that every open ball is open.

(c) Define the interior of a set in a metric space. If A° denotes the interior of a set A. Show that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.

Q 6: (a) Let (\mathbf{X}, d) , (\mathbf{Y}, d) be metric spaces. When is a function $f : \mathbf{X} \to \mathbf{Y}$ continuous? Show that the sum f + g of two single valued functions is continuous.

(b) Define uniform continuity. Is every uniformly continuous function continuous? Is the converse of this statement true? Justify.

Q 7: (a) Define a topological space. Show that for an infinite set **X**, the collection consisting of θ and all subsets of **X** whose complements are finite is a topology on **X**. (b) Let $\mathbf{X} = \{a, b, c, d, e\}$. Determine whether or not each of the following classes of subsets of **X** is a topology on **X**.

$$\begin{array}{ll} \text{(i)} & \tau_1 = \left\{ \varphi, \mathbf{X}, \left\{ a^2 \right\}, \left\{ a, b \right\}, \left\{ a, c \right\} \right\} \\ \text{(ii)} & \tau_2 = \left\{ \varphi, \mathbf{X}, \left\{ a \right\}, \left\{ a, b \right\}, \left\{ a, c, d \right\}, \left\{ a, b, c, d \right\} \right\} \end{array}$$

Q 8: (a) If
$$f(t) = t\hat{i} - t^2\hat{j} + t^3\hat{k}$$
 and $f(t) = \sin t\hat{i} + \cos t\hat{j}$, then calculate $\frac{d}{dt}(f \cdot g)$ and $\frac{d}{dt}(f \times g)$.

(b) If the position vector of a moving point is given by $\vec{r} = t \hat{i} + \sin t \hat{j} + \cos t \hat{k}$. Find its velocity, speed and acceleration at time t and also at $t = \pi/2$.

For latest news and updates visit <u>http://www.MathCity.org</u>

Downloaded from: <u>http://www.MathCity.org</u>