QUAID-I-AZAM UNIVERSITY DEPARTMENT OF MATHEMATICS M. Phil. Admission Test Spring 2013

Time: 90 minutes Dated: 21-01-2013

Note: Use separate page for each question.

Q.1. Discuss the continuity of f(x,y) at the origin, where

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^3 + y^0} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Q.2. Find T(x,y), where $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that T(1,2)=(3,1,-5) and T(0,1)=(2,1,-1). Also find the kernel of T. Q.3. Let X be a non-empty and \Im be the co-finite topology on X. Show

that X is a compact space.

Q.4. Compute curvature and torsion of the curve

$$\alpha(t) = (\cos t, \sin t, t)$$

Q.5. Solve the initial value problem

$$y'' - 4y' + 3y = 10e^{-2x}, \quad y(0) = 1, y'(0) = -3$$

 \sqrt{Q} .6. Show that if H is a cyclic normal subgroup of a group G, then every subgroup of H is normal in G

Q.7. Find the moment of irertia of a rod of mass m and length 2a about a line passing through the centra of the rod and perpendicular to it.

Q.8. Evaluate $\int_c \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, where c is a circle |z| = 3.

Q.9. Test the convergence of the integral

$$\int_{-\infty}^{\infty} \frac{\cos x + \sin 3x}{x^{\frac{5}{4}}} dx$$

Q.10. Find the solution of

Marin A Property

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}, \ 0 < x < 1, \ t > 0$$

$$u(0, t) = 1, \ u(1, t) = 1, \ t > 0$$

$$u(x, 0) = 1 + \sin \pi x \quad 0 < x < 1$$

Q.11. Let X be an inner product space and $u, v \in X$. If $(x, v) = \langle x, u \rangle$ for all $x \in X$, then u = v.

90 Q.12. Evaluate $\int \cos \omega \, dx$ by using Simpson's $\frac{1}{3}$ rule for n = 6.