QUAID-I-AZAM UNIVERSITY DEPARTMENT OF MATHEMATICS

M.Phil .Admission Test Fall 2011

Time:9 0 minutes Dated:2 2-08-2011

Note: Section lis compulsory, Section II is for Applied Mathematics and Section III is for Pure Mathematics candidates.

Use separate page for each question.

Section I

- **Q.1**. (a) Investigate the limit at (2,1) of $f(x,y) = \frac{\sin^{-1}(xy-2)}{\tan^{-1}(3xy-6)}$.
- (b) Evaluate $\int xy^2 dx$, on the quarter circle C defined $x = 4\cos t$, $y = 4\sin t$, $0 \le t \le \frac{\pi}{2}$.
- Q.2. Determine the radius of convergence for the power series $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^n.$
- Q.3. Fill in the blanks
- (a) If the radius of curvature of a curve is infinite then it is a
- (b) If the radius of curvature of a curve is constant $\neq 0$ then it is a
- (c) If the radius of curvature of a curve is zero then it is a
- (d) If the binormal of a curve is constant then it is a
- (e) If the torsion and curvature of a curve are in a constant ratio then it is a
- (f) If the curvature of a curve is identically zero then its torsion is
- (g) Let $\alpha = \alpha(t)$ be a curve and $\left|\frac{d\alpha}{dt}\right| = 0$ then it is
- (h) The parametrization of a curve isand
- (i) A surface x = x(u, v) is called regular if $\left| \frac{\partial x}{\partial u} \times \frac{\partial x}{\partial v} \right|$ is
- Q.4. Calculate the Christoffel's Symbols: Γ_{12}^{\perp} , Γ_{12}^{2} , Γ_{12}^{1} , Γ_{22}^{1} for $(ds)^{2} = (dr)^{2} + r^{2}(d\theta)^{2}$.
- Q.5. Find the subspace of \mathbb{R}^3 spanned by the vectors $\{(1,-2,1),(-2,0,3),(3,-2,-2)\}$.
- Q.6. Show that every convergent sequence in a metric space is bounded.
- Q.7. State Kepler's laws of orbital motion. Prove at least one law for the closed orbits using Newton's equation of motion.
 - Q.8. Find all the eigenvalues and eigenvectors of

$$4(e^{-x}y')' + (1+\lambda)e^{-x}y = 0$$
 $y(0) = 0, y(1) = 0$

Q.9. Solve

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}; \qquad x > 0, t > 0 \qquad u(0, t) = A, t \ge 0; \quad u(x, 0) = 0, x > 0, u \text{ and } \frac{\partial u}{\partial x} \to 0 \text{ when } x \to \infty.$$

Available at www.MathCity.org

- Q.1 0. Use Method iteration to find a real root of the equation $x^3 + x^2 1 = 0$ on the interval [0, 1] by taking $x_0 = 0.75$.
 - **Q.1 1.** Find residue of $f(z) = \frac{1}{z(e^t-1)}$ at z = 0.
- **Q.1 2.** Let $X = \{1, 2, ..., 10\}$ and $\mathfrak{I} = X \cup \{A \subseteq X : 1 \notin A\}$. Show that \mathfrak{I} is a topology on X. Is (X, \mathfrak{I}) separable, T_1, T_2 , compact and connected?
- **Q.1 3**. Let A, B, C be subgroups of a group G such that $A \subseteq B \cup C$. Show that either $A \subseteq B$ or $A \subseteq C$.

Section II

Q.1 4. Find the solution of

$$u(y) = y + \int_{0}^{y} \sin(y - t)u(t)dt.$$

- Q.1 5.If $u = -\frac{cy}{r^2}$, $v = \frac{cx}{r^2}$, w = 0. Find out the equation of streamline.
- Q.1 6. Consider electromagnetic phenomena in free space. Write Maxwell equation and prove that electric field \overline{E} satisfies $\nabla^2 \overline{E} = \mu \in \frac{\partial^2 \overline{E}}{\partial t^2}$.
- **Q.17.** For most earth rocks $\lambda = \mu$. Discuss values of Young's modulus and Poisson's ratio. Write down the stress-strain and the Navier equations in this case.
- Q.1 8. Use Picard's method to obtain y(0.25), y(0.5) and y(1) where $\frac{dy}{dx} = \frac{x^2}{1+y^2}, y(0) = 0$. Perform two iterations only.
- **Q.1 9.** Derive the Lorentz transformations for uniform, rectilinear motion of an observer S with respect to another observer S'.
- Q.20. Find the curve connecting two given points A and B which a particle transverse while going from A to B in shortest possible time, assuming constant gravity. (Brachistochrone problem)

Section III

- Q.2 1. Show that every Hilbert space is strictly convex. The space C[a,b] is not strictly convex.
 - **Q.2 2.** Calculate the Ramsey number R(3,4).
- Q.2 3. Show that a commutative ring with identity R is a field if and only if every ideal of R is prime.
 - Q.2 4. (i) If $F = \mathbb{Z}_2$ and

Find linear code and minimum distance for C.

- (ii) Define orthogonal code and give an example.
- Q.2.5. Show that a continuous function defined on a measurable set is measurable.
- Q.2 6. Show that sum of two submodules of an R-module M is the submodule of M

generated by their union.

Q.27. Let Ω be the space of all functions $f: R^3 \to R$ all of whose partial derivatives (of any order) exist everywhere.Let G be the Euclidean group of R^3 ,that is,the set of all transformations $T_{u,b}: a \to au + b, a \in R^3$, where $u \in O(3)$ and $b \in R^3$. For $g \in G$ and $f \in \Omega$ define f^g by $f^g(x,y,z) := f(x,y,z)g^{-1}$. Show that the prescription $(f,g) \mapsto f^g$ gives an action of G on G.

Good Luck

Available at www.MathCity.org

Acknowledgment: We are very thankful to Mr. Abdul Razaq Maken for providing this paper.